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ABSTRACT 

The accurate prediction of the spatial distribution of 

neutron capture rates in nuclear reactor shields and structur 

al members is important in reactor design but, normally, is 

not possible with the usual mathematical techniques. Design­

ers typically depend upon approximate methods bolstered by 

experiment and by previous experience. 

Because of the probabilistic nature of the physical 

processes involved in the attenuation and capture of neutrons 

in reactor components, the Monte Carlo method offers a 

promising calculational tool with which to attack such prob­

lems. The present paper presents the methods used and the 

results obtained in a Monte Carlo study with an IBM-650 

digital computer of the spatial distribution of neutron 

captures in a series of six alternating semi-infinite slabs 

of iron and water, from a neutron source located at one face 

of the slab array. 

The capture data were obtained in the form p(x) = the 

capture probability at the position x per unit x per inci­

dent source neutron, where x is the distance into the slab 

array as measured along the slab normal. The following func­

tions were fitted to the capture probability data: 

First layer in the array (an iron layer): p(x) = aê x 

Other iron layers: p(x) = a cosh p(x-xQ) 

Water layers: p(x) = A + Bx + Cx2 
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where x = zero at the left face of each layer. Empirical cor­

relations of the parameters (ct, P, xQ, A, B, C) were obtained 

as a function of source energy, between 0.01 Mev and 4.5 Mev, 

for two geometries: 1) all &xab thicknesses equal H" and z) 

all slab thicknesses equal 1". 

Large resonances in the iron total cross section affected 

the capture distributions. Streaming of neutrons through the 

iron layers and into the water layers occurred for source 

energies near the large 25 kev anti-resonance in the iron to­

tal cross section. The resulting increase in the thermaliza-

tion rates led to increased capture rates in the array. A 

smaller, opposite effect (reduced capture rates) was observed 

for source energies near the positive resonance at 0.03 Mev 

in the iron total cross section. 

The most important variables in determining the capture 

rates were the source energy and the thicknesses of the water 

layers. The capture distributions appeared to be relatively 

insensitive to changes in the source angular spectrum. 

Reflection and transmission fractions were obtained as a 

function of source energy for the two geometries. The effect 

of the 25 kev anti-resonance in the iron total cross section 

was clearly evident in the reflection data. The angular dis­

tribution of the reflected neutrons closely approximated a 

cosine angular distribution, while the transmission angular 

spectra were somewhat more peaked in the forward direction. 
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Known physical characteristics of the attenuation and 

capture processes were used to improve the Monte Carlo 

estimates. The results obtained exhibited predictable quali­

tative characteristics to a very satisfactory degree. All of 

the features that would be expected in the capture curves, on 

the basis of physical considerations, were present in the 

final capture curves obtained. 

The rigorous determination of the statistical uncer­

tainty of the capture curves and correlations was not practi­

cal; however, upper limit estimates were obtained and these 

were small enough so that the results were considered to be 

meaningful. 

It was found to be more efficient to feed the random in­

put data into the IBM-650 on cards than to calculate these 

data internally. The random input data consisted of random 

digits from the RAND table of 1 million random digits, ran­

dom exponential deviates from a table of 300,000 such devi­

ates calculated for this study, and cosines of angles that are 

random on (0, 2tt) , from a table of 150,000 such cosines cal­

culated for this study. 
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INTRODUCTION 

Energetic nuclear radiations emanate from the core of an 

operating nuclear reactor. A wide variety of difficult and 

often critically important reactor design problems is con­

cerned with the attenuation, and absorption of these radia­

tions in shields to exclude the radiations from areas of the 

reactor plant in which they would be destructive to materials 

or dangerous to personnel. 

Certain components of the plant must be subjected to high 

radiation levels because of their particular function in the 

reactor complex. Examples of such components include core 

structures, core-containing vessels, "thermal shields" which 

typically protect the core vessel from core radiations, and 

the various shield structures themselves. 

The attenuation and absorption of nuclear radiations in 

these materials cause internal heating and attendant thermal 

stresses so that the determination of rates of absorption of 

nuclear radiations in reactor components, particularly in 

structural members, becomes quite important. The magnitude 

and spatial distribution of heating produced by nuclear radia­

tions in these members must be determined accurately for ef­

ficient design. 

The accurate prediction of radiation heating rates in re­

actor structural members is normally not possible with the 

usual mathematical techniques. This is particularly true if 
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the specific radiation field of concern is composed of neu­

trons, with various spectra of energy and direction of travel. 

No satisfactory method exists at present for calculating the 

distribution of neutrons in materials with dimensions that are 

small compared with the neutron mean free path in the material. 

This is the usual case in reactor structural members and cer­

tain shielding components, e.g_. the thermal shields mentioned 

earlier. Designers typically depend upon approximate methods 

bolstered by experiment and previous experience. 

Neutrons in a nuclear reactor deposit energy in (nonfis-

sile) materials through which they pass by three mechanisms: 

(1) elastic collisions in which a portion of the neutron's 

kinetic energy is transferred to the nuclei of the medium by 

billiard-ball type collisions, (2) inelastic collisions in 

which part of the neutron's kinetic energy is transformed into 

excitation energy of the bombarded nucleus, which then decays 

to the ground state by emission of gamma rays, (3) capture of 

the neutron by the nucleus, the binding energy of the neutron 

being given off in the form of gamma rays. The energy in­

volved in this latter so-called radiative capture reaction is 

usually larger than that in the other two reactions. 

The neutron capture process is significant only at low 

neutron energies; however, low energy or "thermal" neutrons are 

predominant in most present-day reactors. Furthermore, most 

neutron shields depend, for their shielding effect, upon 
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lowering the energy of the incident neutrons to thermal values 

(moderation) whereupon the neutrons are captured by the shield 

media. Therefore, heating effects produced by neutron capture 

in reactor shields and structural members are of considerable 

importance in reactor technology. 

The present study deals with the determination of neutron 

capture distributions in multiregion structures of iron and 

water. Iron was chosen for this study because of its obvious 

importance as a structural material. Water was chosen be­

cause of its widespread use in the reactor field both as 

moderator and as coolant. Iron and water are used together 

in such areas as: thermal shields, core structures, heat ex­

changers, and coolant and steam piping. 

The difficulties encountered in attempting to describe 

the attenuation and capture of neutrons through thin multi-

region configurations arise not in describing the microscopic 

processes that are involved, but rather in trying to predict 

the net macroscopic averages or effects of these microscopic 

processes. The types of interactions that a neutron may un­

dergo in reactor materials are known, as are, for the most 

part, the probability distributions for changes in the state 

variables (position, energy, direction of travel) of a neutron 

at each interaction.̂  Mathematical difficulties arise when 

Ît should be pointed out that these microscopic proba­
bility laws for neutron interactions and accompanying state 
changes are the most that can be "known" about the transport 
of a neutron since the phenomena are entirely probabilistic 
in nature. 
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one tries to translate these random events into equations for 

predicting the average effects of many, many such events. 

These difficulties are compounded if the system being con­

sidered consists of several regions of different materials in 

which the microscopic probabilities (measured by the so-called 

interaction cross sections) vary with position as well as with 

the energy of the neutrons. 

Because of the probabilistic nature of neutron interac­

tions with matter, the Monte Carlo method offers considerable 

promise as a means of attacking difficult problems in neutron 

transport. Monte Carlo techniques have been used successfully 

in a number of such problems in the nuclear reactor field (1), 

(2), (3). The advent of larger and faster computing machines 

and increasing familiarity of workers in the field with the 

method may establish Monte Carlo as a standard calculational 

tool in nuclear reactor design. 

The field of Monte Carlo originated during the early and 

mid 19401 s apparently as a result of suggestions advanced by 

J. von Neumann and S. Ulam at Los Alamos. Virtually nothing 

appeared in the open literature concerning Monte Carlo until 

about 1949. In June of that year, the first symposium on 

Monte Carlo was held in Los Angeles under the sponsorship of 

the RAND Corporation and the National Bureau of Standards, 

with the cooperation of the Oak Ridge National Laboratory. 

The proceedings of that conference were published by the NBS 
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in 1951 (4). 

Dr. A. S. Householder of ORNL makes the following state­

ment concerning Monte Carlo in the foreword to these proceed­

ings, 

"The Monte Carlo method may briefly be de­
scribed as the device of studying an artificial 
stochastic model of a physical or mathematical proc­
ess. The device is certainly not new. Moreover, the 
theory of stochastic processes has been a subject of 
study for quite some time, and the novelty in the 
Monte Carlo method does not lie here. The novelty 
lies rather in the suggestion that where an equation 
arising in a non-probabilistic context demands a 
numerical solution not easily obtainable by standard 
numerical methods, there may exist a stochastic proc­
ess with distributions or parameters which satisfy the 
equation, and it may actually be more efficient to 
construct such a process and compute the statistics 
than to attempt to use those standard methods. 

"Simple and natural as this suggestion seems, 
once it is made, someone had to make it first in a 
voice loud enough to attract notice. The voices seem 
to have been chiefly those of Ulam and von Neumann, 
though Enrico Fermi . . . also contributed." 

Many of the techniques found under the label of Monte 

Carlo in the literature are not new to statisticians. They 

have used similar methods for many years in survey sampling 

and model sampling procedures. Nevertheless, the field of 

Monte Carlo appears to have originated almost independently of 

the statisticians. A. W. Marshall in the introduction to the 

proceedings of a Monte Carlo symposium held at the University 

of Florida in 1954 (5) says, 

"The statisticians had . . . been using model 
sampling methods to investigate some of their prob­
lems . . . since the early 19001s. Their use of 
sampling reached a peak in the period 1925-1935 and 
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then died off. However, their work was concerned 
with probabilistic problems so that they were not 
interested in the sort of thing which might lead to 
the original von Neumann-Ulam idea .... In any 
case the statisticians did not have the analogue 
idea and this is what got Monte Carlo in its current 
form started." 

The field was dominated by the original analogue idea un­

til about 1950. Since that time, there has been a relative 

decline in interest in the analogue solution of deterministic 

problems and an increase in the interest of the statisticians 

in the field of Monte Carlo. The field has been dominated in 

recent years by practical applications to problems with a 

probabilistic basis, typical of which are the particle dif­

fusion problems. The usual procedure in these problems is to 

translate the functional equations describing the diffusion 

process back to a probabilistic basis as found in nature and 

then to simulate the diffusion process directly by stochastic 

methods. In the reference cited earlier (5), Marshall points 

out, 

"The most important practical applications thus 
far have had a probabilistic basis; the influence of 
the original Monte Carlo idea has been to suggest 
treating them directly as probabilistic problems rather 
than attempting a difficult, if not impossible, ana­
lytical solution. The translation and later retrans­
lation of problems from probabilistic terms to non-
probabilistic mathematical problems and back again has 
been by-passed." 

Many references exist that describe both theoretical and 

applied work that has been done in the field of Monte Carlo 

(3), (4), (5), (6), (7), and no additional background will be 
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given here. Suffice it to say that the variety of problems 

that have been attacked with Monte Carlo and the ingenuity 

that has been displayed are impressive. 

The present application of the Monte Carlo method is a 

direct stochastic simulation of a particle diffusion process, 

that of the diffusion and capture of neutrons in an assembly 

of alternating iron and water regions. The remainder of this 

paper will elaborate upon the details of the methods used, but 

a brief description of the basic approach is in order here. 

A neutron is considered to be incident upon an array of 

iron and water slabs. A "history" or trajectory for this 

neutron through the assembly is calculated by specifying, via 

stochastic methods, the interactions of the neutron with the 

media and the changes in the state variables of the neutron at 

each such event. These specifications are made by random 

selection from the probability distributions describing each 

quantity. By generating many of these histories, usually with 

the aid of a high speed computer, one can simulate a low in­

tensity experiment. 

The potential advantages of such a simulation are obvious. 

Experiments that are too difficult or too expensive to perform 

in the laboratory may be readily amenable to study by simula­

tion with the computer. Of equal importance is the ease with 

which parameters such as geometry and neutron energy may be 

changed in the computer program. This contrasts markedly with 
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the usual difficulty with which such changes are made in the 

laboratory. 

Clearly, two things are essential for the success of the 

simulation. First, the number of histories must be large 

enough to be statistically meaningful and, secondly, the basic 

microscopic probability laws describing the processes involved 

must be known. It should be noted, however, that given these 

probability laws, there are no approximations in the calcula­

tions. Indeed, the method is inherently realistic, the only 

intrinsic limitation being the necessity of obtaining statis­

tical significance in a reasonable amount of calculating time. 

The machine employed in the present study was a basic 

IBM-650 digital computer with alpha device. This machine has 

a 2000 word memory of the magnetic drum type. Each word is of 

fixed length and contains ten digits plus a sign. 

The array examined was that of Figure 1. The layers are 

semi-infinite, the only significant dimension being measured 

along the normal to the assembly. Thicknesses studied were in 

the range H to 3 inches. 

The geometry of Figure 1 was chosen primarily as a con­

cession to the limited capacity and speed of the computer that 

was used. The limitation of slab geometry is not considered 

to be serious. The results should have application to a vari­

ety of geometries that only approximate that of Figure 1 in an 

area of dimensions comparable to the neutron mean free path. 
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SOLUTION OF NEUTRON TRANSPORT PROBLEMS 

The usual mathematical methods of solving neutron trans­

port problems are based upon the Boltzmann transport equation 

(8). The steady state form of this equation is: ̂ 

-/!• grad% f (E, A/x)- f (E, H,1c) [2g(E, x) + 2a(E,"x)] 

+ S(E, ÛTL/X) 

+ J dE'd Jni f (E1, n!,x) 2S (E' E, TÎ1 JfL/x) = 0 

where, 

f(E, T\..x) = the angular flux = number of neutrons 

in dx about "x, with energy in dE about 

E, and with velocity in the solid 

angle dA about ft times the magnitude 

of the neutron velocity 

m = the neutron mass 

x = the position vector 

_TL = a unit vector in the direction of the 

neutron velocity 

E = the neutron kinetic energy 

2S = the scattering cross section of the 

medium 

2a = the absorption cross section of the 

medium 

2S -> Jq_,x) = the cross section at "x for scattering 

from E ' to E and TL ' to JnL 
1It is assumed that the material is isotropic, I . e . ,  that 

the cross sections do not depend upon the direction of the in­
cident neutron. 
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S(E,_n_,x) = the neutron source 

A considerable simplification in this equation resul s if 

the neutrons are monoenergetic. The resulting monoenergetic 

steady state equation is 

- • gradx f(_TL, x) - [2s(x)+ 2a(x) ] f (_fl_ ,x) 

+ J dit' f (A ,x) 2S (Jl'-̂ It/xH S (A, x) = 0 

Normally, one is concerned with a spectrum of neutron 

energies. The usual procedure is to divide the spectrum into 

a number of "groups' such that an effective energy and an 

effective set of the pertinent physical constants may be de­

fined for each group as if there was no energy variation with­

in the group. The monoenergetic transport equations for these 

groups are coupled in that neutrons leaving one group form 

part of the source for other groups. The resulting problem is 

that of solving this system of coupled equations. 

The Boltzmann equation cannot, in general, be solved 

rigorously. A large variety of methods exists for obtaining 

approximate solutions to this equation for special cases. A 

few of these are described below. 

Diffusion Theory 

If the neutron angular flux is isotropic (which will be 

true only if the spatial variation of the flux is small; jL.je,, 

if there are no sources or boundaries within several mean 

free paths of the point in question and if the absorption 

cross sections are small), a scalar flux, 0, may be defined 
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for which Pick's law applies. 

J = -D grad 0 

where J is the neutron current or the net rate of flow of 

neutrons in the direction of J, and D is the neutron dif­

fusion coefficient at "x. 

Pick's law leads to the following relatively simple 

steady state diffusion equation (9): 

div [D grad 0 (x) ] - 2a (x) 0 (x) + S (x) =0 

or 

D 0 (x) - Za(x) 0 (x) + S(x) = 0 

for a homogeneous medium. 

Examples of assumptions that are often made (singly or in 

combination) in special cases to enable specific problems to 

be solved with diffusion theory are: 

1) All scattering events are isotropic in the center-

of-mass coordinate system. 

2) The absorption cross sections are small. 

3) The energy of a neutron is unchanged by scattering 

events. 

4) No inelastic scattering is present. 

5) Experimentally determined constants are used in the 

equations to obtain solutions to problems that are 

similar to the experimental problem. 

These methods and approximations are used with varying 

degrees of success depending upon the particular application 
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and how closely the actual problem resembles the assumed prob­

lem. 

A more rigorous form of the Boltzmann equation than is 

afforded by diffusion theory is necessary if the flux has a 

pronounced angular dependence. Again, assumptions such as are 

listed above lead to simplifications in specific cases and 

enable adequate solutions to be obtained in certain of these 

special problems. 

A wide variety of numerical techniques has been devised 

for obtaining solutions to the Boltzmann equation. These 

methods are usually limited by convergence difficulties, » 

by the computing time that is required. Two typical methods 

of this type are described below. 

Spherical Harmonics Method (Higher Order Diffusion Theory) 

The angular flux is expanded in a series of Legendre 

polynomials that terminates after n terms (Pn approximation). 

The resulting system of equations is usually solved by numeri­

cal methods to obtain the coefficients such that the expansion 
•x. 

approximates the solution to the Boltzmann equation. The 

larger the number of terms in the expansion, the more accurate 

will be the resulting solution. Convergence is rather slow, 

and the computational work required increases rapidly as the 

number of terms in the expansion is increased. The method be­

comes unwieldy for difficult problems. 
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Carlson's Sn Method 

In this method, the angular flux distribution is assumed 

to be a linear function of the cosine of the angle over each 

of n subintervals into which the cosine axis is divided. This 

makes it possible to integrate the Boltzmann equation, again 

with numerical methods, in a variety of problems. The com­

putations again become prohibitively laborious for difficult 

problems. 

All of the methods outlined above are unsatisfactory for 

the solution of the problem described earlier in this paper 

(thin iron and water layers). In this problem, the dimensions 

of the slabs are of the same order of magnitude as the mean 

free path of neutrons in the assembly, and the absorption 

cross section of iron is large. Hence, there will be a large 

spatial variation in the neutron flux and the flux will be 

markedly anisotropic. Furthermore, over much of the range of 

energies of concern, significant inelastic scattering occurs 

in iron, and elastic scattering in both iron and oxygen is 

highly anisotropic. In short, none of the commonly made as­

sumptions in neutron transport theory are valid, and the so­

lution of the problem with the usual mathematical methods is 

very difficult if not impossible. Solution of such problems 

is especially tedious with a machine such as the IBM-650. 

The Monte Carlo method, while too laborious for use in 

solving problems in which the simpler approximate methods are 
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adequate, may be used to solve difficult problems with com­

paratively little more computing labor than for the simpler 

problems. 

Thus, for the solution of relatively simple neutron 

transport problems, or in problems in which only very approxi 

mate answers are required, various of the approximate analyti 

cal methods are certainly superior to Monte Carlo. On the 

other hand, for complex neutron transport problems, the Monte 

Carlo method may offer a much more tractable or, indeed, the 

only available method for obtaining adequate answers. 
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DEFINITIONS OF PROBABILITY DENSITY FUNCTIONS -

TRANSFORMATION OF RANDOM VARIABLES 

Definitions 

Random Variable - A random variable is a quantity that is 

associated with the outcome of a game of chance, or with an 

event of a specific class in such a manner that the random 

variable takes on a definite characteristic value for each 

possible outcome or event in the class. 

For example, a random variable Z might be associated with 

the outcome of a toss of a die, where Z = the value of the up­

turned face of the die. As another example, the value of a 

point selected at random from the interval (0, 1) of the real 

line could constitute a random variable. 

Probability Density Function (Probability Distribution 

Function) - Associated with a random variable will be a prob­

ability density function giving the complete set of probabil­

ities, P(A), for all of the possible values, A, that the ran­

dom variable may assume.1 

For the game of tossing a die, the probability density 

function is discrete, i.is., the possible outcomes are finite 

in number. In this instance (for a true die), 

P(l) = P(2) = P (3) = P(4) = P(5) = P(6) = 1/6 

In contrast, the number of points that may be selected at 

1The definitions and equations presented in this section 
may be extended in a straightforward manner to multivariate 
distributions. 
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random from the interval (0, 1) is infinite. The correspond­

ing density function is, therefore, continuous. The probabil­

ity density function, p(x), for a continuously distributed 

random variable (or "variate"), X, is defined by 

p(x)dx = the probability that the random variable will 

take on a value lying in dx about x 

where dx is a small increment of x. 

The probability density function for a number selected at 

random from the interval (0, 1) is 

p(x) =1 

(It should be noted that the integral of a probability density 

function over its range of definition, jL.e., over all possible 

values of the random variable, must be equal to 1 since the 

probability of any outcome is 1.) 

Cumulative Density Function - The cumulative density 

function is the integral (or the sum if the distribution is 

discrete) of the density function from the lower bound of def­

inition to a specified value x. It gives, therefore, the 

probability that the random variable will take on a value that 

is less than or equal to x. 

If p(x) = 1, 0 ̂  x 1, the cumulative density function 

will be, 

F(x) = f p(x')dx' = P(X <( x) = x = the probability 
Jo -
that a selected value, X, of the random vari­

able will be less than or equal to x. 
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Transformation of Random Variables (10) 

Consider a random variable, X, with probability density 

function f (x), a <[_ x <_ b. Assume that a second variate, Y, 

is defined by Y = h(X), where h is a single-valued function of 

X such that a unique inverse X = h-1(Y) exists. 

The probability density function, g(y), for Y is given 

by, 

g(y) = f [h~1(y)] dĥ y' 

Now, since h gives a one-to-one correspondence between X 

and Y, it is clear that P (X <( x) is equal to P (Y <( y), where 

X is a specific sample from the population f(x) and y = h(x), 

Y = h (X) . Thus, 

r* rY 
F (x) = / f (x ' ) dx ' = / g(y')dy' = G (y) 

"a "h (a) 

If g(y) is the uniform distribution, 

g (y) =1 for 0 y 1 

= 0 elsewhere 

we have 

F (x) = j f (x1 ) dx ' = I dy ' = y (1) 
va j o 

Equation 1 has been called the "Golden Rule" of Monte 

Carlo (2). Its utility lies in the fact that it may be used 

to select random samples from the distribution f(x), provided 

that equation 1 can be solved for x. 

Independent random samples are obtained easily from the 

uniform distribution, g(y), by selecting random numbers from 
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the interval (0, 1) as mentioned earlier. Furthermore, for a 

given sample Y, G(Y) is just equal to Y and, by equation 1, Y 

equation 1 for X supplies a random sample from a distribution 

with cumulative density function F (x), i_.e_., from the distri­

bution with density function f(x). 

This method does not necessarily constitute the most ef­

ficient means of selecting random samples from f(x), even if 

equation 1 can be solved for x. However, the "Golden Rule" 

contained in equation 1 has been used extensively in the Monte 

Carlo field, and its generality makes it a very useful tool. 

The following example should serve to illustrate the 

method more clearly. 

Consider the problem of selecting a random sample, X, 

from the exponential distribution, 

We select a number, R, at random from the interval (0, 1) and 

substitute into equation 1 to get 

ir _ In (1-R) X - A 

Note that (1 — R) is random on (0, 1) so that we could 

use equally well, 

X = — lnR 
K 

is also equal to F(X) where X = h™1(Y) . Thus, the solution of 

f (x) = Ke ̂  0 <( x <( cd 

or 
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NOMENCLATURE 

The symbols used in this paper are defined, for the most 

part, in the text and a given symbol may be used for several 

different quantities. Certain symbols are used rather con­

sistently throughout the text, however. The following list 

of definitions for such symbols is included to avoid the 

necessity of redefining these symbols in detail at each ap­

pearance . In a few instances in the following list, a given 

symbol will have two definitions. The particular meaning to 

be attached will be clear from the text. 

The cgs (centimeter-gram-second) system of units was 

used except where indicated otherwise. In general, the system 

of units being employed is not important in the derivations 

and in the discussions, and no units have been included in 

this list of definitions. (It is essential, of course, that 

a consistent set of units be used). 

The following definitions will apply: 

Ej_ = the kinetic energy of a neutron after the ith col­

lision in a history 

E0 = the neutron energy at the beginning of a history 

kB = the Boltzmann constant 

M = the mass of a nucleus involved in a collision 

m = the mass of the neutron 

p(x) = the probability density function for a continuously 

distributed random variable X; the capture 
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probability at the position x per unit 

distance per incident neutron 

p(A) = the probability that the event A will oc­

cur; the probability that the discretely 

distributed random variable being consider­

ed will take on the value A 

T = absolute temperature 

V = velocity 

Wj_ = the neutron "weight" after the ith colli­

sion in a history 

WQ = the neutron "weight" at the beginning of a 

history 

X£ = the position, as measured along the normal 

to the slab array, of the ith collision in 

a history 

x0 = the neutron position, as measured along the 

normal to.the slab array, at the beginning 

of a history 

cra(E) or cra = the microscopic absorption cross section 

for neutrons of energy E 

Og(E) or Og = the microscopic scattering cross section 

for neutrons of energy E 

<Jin(E) or 0j_n = the microscopic inelastic scattering cross 

section for neutrons of energy E 

crT(E) or crT = the microscopic total cross section for 
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neutrons of energy E 

cr0(E) or cr0 = the microscopic total cross section of 

oxygen for neutrons of energy E 

c7jj(E) or = the microscopic total cross section of hy­

drogen for neutrons of energy E 

or <jH2o = the microscopic total cross section of a 

water molecule for neutrons of energy E 

(E) or ZB = ncfg (E) or nffg = the macroscopic cross 

section corresponding to the microscopic 

cross section where B designates a 

specific type of cross section and n is the 

number of nuclei in the material per unit 

volume 

= the scattering angle in a neutron-nucleus 

collision as measured in the laboratory 

system of coordinates 
* 
= the scattering angle in a neutron-nucleus col­

lision as measured in the center-of-mass sys­

tem of coordinates 

©i = the angle between a neutron's velocity and 

the slab normal after the ith collision 

ETa = the upper limit of the thermal energy range 

for nuclide A 
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A STRAIGHTFORWARD MODEL 

Before proceeding to a description of the program used in 

this study, it will be instructive to examine a straightfor­

ward Monte Carlo simulation of the problem described in the 

introduction. The straightforward method, while so ineffi­

cient as to be impractical, embodies most of the basic fea­

tures of the actual simulation that will be described later, 

and it will serve to introduce most of the relevant equations. 

As mentioned earlier, random neutron paths or histories 

through the assembly being examined are calculated one by one, 

thereby simulating a low intensity experiment. If the number 

of such histories is large enough, one obtains statistically 

meaningful averages for the characteristics or effects that 

are being sought, e_.ç[_., collision densities, spectra, life­

times, or, as in the present study, eventual fates. 

The configuration to be studied is shown in Figure 1. 

The six slabs, with thicknesses defined by tj to tg, are as­

sumed to be infinite in the y and z directions, and distances 

along the direction normal to the array are measured by x. 

Consider a neutron impinging upon the left face of this 

assembly and traveling with a velocity V" directed at an angle 

0O to the slab normal and with corresponding energy EQ. The 

starting point will be given by x = xQ. The state of this 

neutron at any point in its travel through the slab array will 

be characterized by the three quantities: 
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x = the position of the neutron along the slab normal 

9 = the angle that the neutron's velocity vector makes 

with the slab normal 

E = the (kinetic) energy of the neutron 

We wish to generate a random history for this neutron 

through the array so as to simulate the trajectory of an 

actual neutron impinging upon a real array and to determine 

the fate of the neutron and the values assumed by its state 

variables (position, energy, direction of travel) when the 

history terminates. To do this, we must specify the types and 

positions of the interactions that the neutron undergoes with 

the materials of the slabs and the changes in the state vari­

ables at each such collision. Each of these specifications is 

to be made in a completely random manner, subject only to the 

appropriate probability law in each instance. 

To generate this history we proceed as follows: 

1. Source. The neutron source is specified by as­

signing values to xD, ©G, and E0. For example, assume that 

the source is isotropic (equal in all directions, :L.ê , the 

cosine of the emission angle is uniformly distributed between 

-1 and 1), monoenergetie, and located at the left face of the 

assembly of Figure 1. We set xc = the coordinate of the left 

face, E0 = the source energy and cos 0O = R, where R is a num­

ber selected at random on the interval (0, 1) (only neutrons 

with cos 0O > 0 enter the assembly). 
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2. Distance Between Collisions (Appendix A) . The 

distance, Ax̂ , along the direction x to the next collision for 

a neutron with energy Ê _̂  and located at Xj__i is governed by 

the probability distribution, 

®i-l 

P(AX1) = cos 9i_i 6 

We select a value of Axj_ at random from this distribution 

by picking a random sample, Yj_, from an exponentially distri­

buted population (Appendix A) and then calculate AXj_ from, 

Yi cos 

" 2T(Ei-l> 

The position of the next collision (ith collision) is 

then given by, 

xi = xi-l + A%i 

We make the provision, however, that x̂  must lie in the same 

slab as x̂ _̂ , or in the first slab in the direction of the 

neutron's travel if is located at. a boundary of a region. 

If x± lies past the next boundary, tj, in the direction of 

travel, x̂ _̂  is set equal to tj and, the process is repeated 

using a new and the total cross section for the new region. 

If xi exceeds tg or is smaller than xD, the neutron is 

considered to have been transmitted or reflected respectively. 

This fact is recorded, along with Ej__j and cos and a new 

history is begun. 

When an x̂  is established that lies in the correct region 

with respect to xj.-i the i"*-*1 collision is considered to occur 
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at xi# 

3. Type of Interaction. Having determined the posi­

tion of the ith collision, the type of interaction at this 

point must be specified. The probability that an interaction 

of type A will occur is given by, 

P(A) = ffA(Ei_1)/CTT(Ei_1) 

where, 

0rp = = the total microscopic cross section for the 

k material 

We must select each type of interaction with the proper prob­

ability. 

For illustration, assume that the collision occurs in 

iron. The possible reactions at energies of interest here are 

radiative capture, inelastic scattering, and elastic scatter­

ing, with corresponding probabilities, 

tfs(Ei-l>/tfT<Ei-l> " Probability for elastic scattering 

<Jin (Ei-l) /(Ei-l) = probability for inelastic scattering 

°a ̂ Ei-1^/aT(Ei-1^ = probability for radiative capture 

where, 

aT = as + crin + ca 

To select a type of interaction with the proper probability we 

select a number R at random on the interval (0, 1) and make 

the following specification, depending upon the value of R. 

. cr 
If R ( — we specify the interaction to be elastic scat-

(Tip 
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tering, if < R < gS + gin we specify inelastic scatter-
°T ctT 

ing, and for R )> PS + gin we specify radiative capture. 
CJIJI 

If we recall that, upon selecting a number R at random 

from (0, 1), the probability of obtaining a number that is 

less than or equal to some number k is just equal to k, then 

it is clear that each of the possible interactions is speci­

fied with the proper probability. 

The interactions of concern in this study are capture, 

inelastic scatter, and elastic scatter in iron, and, in water, 

oxygen elastic scatter and hydrogen capture and elastic scat­

ter. Radiative capture in oxygen is negligible. 

4. Angle of Scatter. The angle of scatter is defined 

as the angle between the incoming and the outgoing velocity 

vectors of a scattered neutron. The probability distribution 

describing this quantity depends upon the incoming energy of 

the neutron, the type of scattering event, and the species of 

nucleus with which the interaction takes place. Those cases 

of interest here are, at energies above thermal, elastic scat­

tering and inelastic scattering in iron, and elastic scatter­

ing in oxygen and hydrogen. At thermal energies only elastic 

scatter from iron, oxygen and hydrogen is important. 

At energies of concern in this study, inelastic scatter­

ing in iron is approximately isotropic in the center-of-mass 

system of coordinates (11), as is elastic scattering in 
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hydrogen (12). Thus, for these events, we set 

cos ̂ j_* = 2R - 1 

where R is random on (0, 1). 

Elastic scatter in iron and oxygen at energies above 

thermal is not, in general, isotropic. The probability dis­

tribution for the cosine of the scattering angle in the 

center-of-mass system for anisotropic scattering events is 

given by a polynomial expansion (Appendix F), 

L 
p (cos f * )  = ZZ A% (Ei_1)cosn i/±* 

n=l 

A random cosine is selected from this distribution by a 

rejection technique due to von Neumann and outlined in Appen­

dix I. This selection specifies the scattering angle in the 

center-of-mass system for such interactions. 

For elastic scattering angles at thermal energies, see 8. 

5. Azimuthal Scattering Angle. The azimuthal scat­

tering angle, 0̂ 3 is the angle through which the outgoing 

neutron's velocity vector is rotated about the incoming ve­

locity vector. This angle is uniformly distributed from 0 to 

2ir. A table of random samples of cosines from a population of 

angles random on (0, 2ir) has been prepared with a method due 

to von Neumann and described in Appendix J. A selection from 

this table specifies the cosine of the azimuthal scattering 

angle. 

6. Angle with the Slab Normal of a Scattered Neutron's 
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Velocity Vector. The angle that a scattered neutron's 

direction of travel makes with the slab normal after col­

lision i is given, at energies above thermal, by (Appendix E), 

cos G-l = sin fi sin ©i_i cos + cos cos ©i_i 

Here, sin ©i_i and cos ©i-l are obtained from the previous 

collision, cos 0± is obtained as described in 5, and cos is 

obtained from (Appendix D), 

1 + a cos 
cos fj_ = — 

1̂ + a2 + 2a cos fj* 

where, 

a = M/m = mass of nucleus/neutron mass 

For thermal energy collisions, see 8. 

7. Energy Change in Scattering Events. The energy 

change in an inelastic scattering event in iron is selected 

from a table of emission probabilities for inelastic scatter­

ing gamma rays. Seven of these tables have been prepared, de­

pending upon the incident energy of the neutron. These tables 

were prepared from data compiled by Nuclear Development 

Corporation (13). The tables are described in detail in Ap­

pendix K. Selection of the energy change is made by means of 

a random number as described in 3. 

For elastic scattering above thermal energies the energy 

change is given by (Appendices B and C), 

Ej_ 1 + a2 + 2a cos i/j* 
Ei-1 (1 + a)2 



www.manaraa.com

30 

where a = M/m as in 6. 

8. Events at Thermal Energies. For neutrons with 

energies below 1 or 2 electron volts the nucleus can no longer 

be considered to be at rest as at high energies (Appendix B). 

In addition, chemical binding effects become important, i_.ê , 

the nucleus is no longer effectively unbound. The determina­

tion of the scattering angles and energy changes in scattering 

events at thermal energies is consequently not a straightfor­

ward matter as at higher energies. Certain approximate 

methods must be employed. 

In the present work, a method described by J. R. Triplett 

et al. at Hanford was used (14a). The method is described in 

detail in Appendices G and H. The results obtained by using 

this method appear to be adequate and are discussed in later 

sections of this paper. 

Having established that a neutron's energy has been re­

duced to a value in the thermal range by a previous collision 

and that a scattering event takes place, the outgoing direc­

tion and energy are determined by the following equations, 

Ej_ = h m Ve2 

cos ©i = 

Ve2 = v2g2 „ + (AV)2 + 2VAV_ n 
(1 + a) 2 1 + a 

U = (a + aa")a '" + O + ap")p'" + (7 + ay")7"' 

C2 = 1 + a2 + 2a|X 

V(a + aa") + AVa1 
(1 + a) 

Ve 



www.manaraa.com

31 

p. = cos fj_* = aa" + PP" + yy" 

a = M/m 

a = cos ©j__i 

p = 0 

Y = sin G±_i 

a" = 2R% - 1 

pit = -V l - (a") 2 sin 0 

y" = v1 - (a")2 cos 0 

a1,1 = 2r2 - 1 

P•" = ̂  1 - (a'")2 sin lO 

Y= «/1 - (a1") 2 cos 

Rl and Rg = Random numbers from (0, 1) 

0 and u) = Random angles from (0, 2-/r) 

Xj_ = a variable selected from a probability table via 

the method of 3 (see Appendix G) 

These procedures establish new state variables for a neu­

tron having undergone collision number i. The calculations 

are repeated from collision to collision until the history is 

terminated by capture of the neutron by the media or by the 

neutron's having been reflected or transmitted. A tabulation 

of the number of captures as a function of x establishes a 

capture distribution in the array from a source of strength 

.2 
2E i-1 

v m 
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equal to the number of histories calculated. 

The angular spectrum, the energy spectrum, and number 

spectrum of reflected and transmitted neutrons are a by-prod­

uct obtained from the calculations, provided that these have 

statistical significance. 
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THE STATISTICAL ESTIMATION TECHNIQUE 

The straightforward method described in the previous sec­

tion simulates exactly the transport and capture of neutrons 

through the array of Figure 1. Answers produced by this 

method will have large variances; i_.e_., large statistical un­

certainty, because only the last collision contributes to the 

final answer. Many collisions must be calculated for each 

such contribution. This will be true to an even greater ex­

tent for relatively small arrays in which most histories 

terminate by reflection or by transmission. Thus a very large 

number of histories will be required to obtain statistically 

adequate results. 

A method originated by von Neumann and his associates at 

Los Alamos during the 19401 s may be used to decrease greatly 

the variance of the predicted capture rates. This method has 

been called "Statistical Estimation" (6) because an estimate 

of the answer is made at each collision. 

In this method a weight, Wj_, constituting a fourth state 

variable, is assigned to each neutron. This weight has value 

W0 at the beginning of a history. No capture events are con­

sidered to take place as in the straightforward method. In­

stead, all collisions are assumed to be scattering events. A 

neutron thus survives all collisions. It survives a given 

collision, i, however, with its weight reduced by a fraction 

equal to the nonsurvival probability at that collision. 
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wi = wi-l 

The x-axis is divided into n equal intervals, Axi, i = 1 

to n. The weight decrease accompanying a collision in Ax̂  is 

deposited in Ax̂ . The total accumulation of such deposits in 

each constitutes an estimate of the number of starting 

neutrons that can be expected to suffer capture in Axj,. 

By means of this technique, the "capture" of each neutron 

is distributed over many Ax̂  intervals. Every history thereby 

makes many small contributions to the ultimate capture distri­

bution instead of one large deposit as in the straightforward 

method. The resulting variances for a given number of his­

tories are much smaller for the small deposits because of 

their larger number. 

If the concept of fractional neutrons is disturbing, one 

can consider each history in the statistical estimation cal­

culation as representing WQ starting neutrons which follow the 

same random path through the assembly. At each collision ad­

vantage is taken of the fact that the probable fraction of the 

neutrons entering the collision that will be captured, p£ = 

tfa(ei-.i) 
Oijt(E• )̂" Wi-1' is known exactly. One, therefore, knows the 

probable number of neutrons that will continue to the next 

collision and the probable number of neutrons that will be 

captured, jt.js., the "weight" that will be deposited by the 

1-
ysj-i) 

°T*Ei-i' 
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collision. The accumulation of the deposited neutrons, or 

weights, in Ax̂  divided by the total number of starting neu­

trons will be an estimate of the nonsurvival probability per 

neutron (capture probability) in Ax̂ . 
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RUSSIAN ROULETTE 

A neutron history in which statistical estimation is used 

to score the results, as described in the previous section, is 

clearly interminable. Some method must be used, therefore, to 

terminate histories. This must be done in such a way so as to 

leave the final results relatively unaffected. 

One obvious manner in which this may be done is to ter­

minate a history when the weight, Wj_, reaches a value so low 

that any further contribution to the final results by that 

neutron may be neglected. This method is extremely ineffi­

cient, however. The same amount of computing time is required 

to reduce the weight of a neutron from 0.1 to 0.01 as is re­

quired to deposit the first 90% of the weight. Thus, most 

of the computing time is spent in calculating relatively un­

important low weight collisions. 

A much more satisfactory method was originated by Ulam 

and von Neumann at Los Alamos. They called this technique 

Russian Roulette for reasons that will become clear shortly. 

In the Russian Roulette method of terminating histories, 

the neutron is allowed to "play" a game of chance at all col­

lisions after its weight is reduced to some pre-assigned 

value, WR. The possible outcomes of the game are that the 

neutron survives with its weight increased or that the neutron 

"dies" at the point of the collision. The probability of 

survival and the weight increase for neutrons that survive are 
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specified so as to produce, on the average, the same total 

weight of continuing neutrons that would exist if the game was 

not played. 

Two variations of Russian Roulette were used in this 

study. In the first, the neutron is allowed to continue with 

probability equal to Wj/W0. If the neutron survives, its 

weight is set to WQ. The other variation terminates the 

history with a constant probability P. A surviving neutron in 

this instance has weight Ŵ /(l-P). To select survival or 

"death" with the proper probability, a random number, R, is 

selected from the interval (0, 1) and compared with Wi/W0 (or 

1-P as the case may be). The neutron survives if R ( Wj/Wo 

(or if R <[ 1-P in the second variation) . 

The total weight of neutrons that survive the Russian 

Roulette game and continue their history is, on the average, 

unchanged from that in the low weight termination scheme de­

scribed previously. This may be seen as follows. 

Let the probability of termination be P. The probability 

of survival is 1-P. Now, if N neutrons reach WR with weights 

Wx and Russian Roulette is not employed, the total weight of 

the neutrons that continue their histories is NWj_. All neu­

trons continue with weight Wj_. With Russian. Roulette, the 

average number of neutrons that survive is N(l-P), and these 

surviving neutrons will have weight Wj_/(1-P) . The average 

total weight of surviving neutrons is, therefore, N(l-P)Wj/ 
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(1-P) = NWj_. In other words, with Russian Roulette we process 

N(l-P) neutrons with weight Wi/(1-P) instead of N neutrons 

with weight W±. 

As may be obvious, introduction of Russian Roulette will 

increase the variance of the results somewhat. This is due to 

the reduction in the number of events at lower weights. How­

ever, the increased number of histories that will be required 

to produce the same statistical accuracy as with the low 

weight termination method will be compensated several-fold by 

the savings in computing time accomplished in avoiding most of 

the low weight calculations. 
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RANDOM INPUT DATA 

The random input data for these calculations were of 

three types. 

1) Random digits from the RAND table of one million ran­

dom digits (14b). 

2) Random exponential deviates from a table calculated 

for this project (Appendix A). 

3) Cosines of random angles from the interval (0, 2tt) 

from a table calculated for this project (Appendix J). 

As indicated, all of the random input data were pre-cal-

culated. This information was read into the machine as needed 

by the program on standard IBM punched cards. This method is 

considerably faster with the IBM-650 than would be the 

generation of the random data internally during the course of 

the calculations. 

Fifty thousand random input cards were prepared. Each of 

these cards contained the following: 

Columns 1-30: six random exponential deviates in the 

form xx.xxx 

Columns 31-44: two cosines of random angles in the form 

.xxxxxxx 

Columns 45-75: 31 random digits (20 of which were used 

in the program). 

Columns 76-80: serial number. 

Between 15,000 and 30,000 of these cards were required 
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for each problem that was run. Each time that the supply of 

50,000 cards was exhausted, the cards were put in a new random 

order by sorting on 3 or 4 of the unused random digits in each 

card and the cards were reused. This procedure was repeated 

for all of the calculations that were made. 

In these calculations, approximately 1 to 1.3 input cards 

were required per collision, i_.<a., 0.03 to 0.05 seconds per 

collision were used for reading cards. This compares with 

approximately 1.3 to 2.0 seconds per collision required for 

the calculations. Calculation of the random input data in­

ternally would have required an estimated 0.4 to 0.6 addi­

tional seconds per collision. 

Five random numbers may be required in the calculation of 

a given collision (these will be discussed later). The twenty 

random digits that were used from each card were employed as 

follows in supplying these five numbers. 

R0 = columns 49-54 

R̂  = columns 45-54 

R̂  = columns 55-64 

Rg = columns 60-64 

R4 = columns 59-64 + columns 51-54 

With this assignment of the random digits, multiple use 

of a random digit in a given collision is kept to a minimum 

and rarely occurs. 
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THE PROGRAM < 

The program that was used in this project was written in 

fixed point basic machine language and was optimized through­

out. The flow sheets describing the program are given in 

Figures 2 to 7. These will be described in order. 

Figure 2 - Initialization. 

The parameters that define the specific problem to be 

run are punched into three cards (identified by a 12 punch in 

column 3). 

Card 1. 

Columns 1-10: tl XXX. XXXXXXX cm 

Columns 11 -20: t2 XXX. XXXXXXX cm 

Columns 21 -30: t3 XXX. XXXXXXX cm 

Columns 31 -40: t4 = XXX. XXXXXXX cm 

Columns 41 -50: fc5 
= XXX. XXXXXXX cm 

Columns 51 -60: 
*6 

= XXX. XXXXXXX cm 

Columns 61 -70: xo XXX. XXXXXXX cm 

Columns 71 

0
 

CO 1 cos II o 
CD 

xx.xxxxxxxx 

Card 2. 

Columns 1-10 : h XXX.XXXXXXX cm 

Columns 11-20: fc3 " t2 
= XXX.XXXXXXX cm 

Columns 21-30: u - t3 = XXX.XXXXXXX cm 

Columns 31-40: fc5 " *4 
= XXX.XXXXXXX cm 

Columns 41-50: fc6 " fc5 
= XXX.XXXXXXX cm 

Columns 51-60: Wo = XX. xxxxxxxx 
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Columns 61-70: WR = xx.xxxxxxxx 

Columns 71-80: sin eo = .xxxxxxxxxx 

Card 3. 

Columns 1-10: E0 = x.xxxxxxxxx Mev 

Columns 11-20: Em = x.xxxxxxxxx Mev 
xFe 

Columns 21-30: Em = x.xxxxxxxxx Mev 
H 

Columns 31-40: Em = x.xxxxxxxxx Mev 
0 

Columns 41-45: Problem number 

Columns 46-50: Number of the first history (e_.c[. 

00001) 

Columns 51-60: = x.xxxxxxxxx Mev'5 

Columns 61-80: Anything (not blank) 

The program reads these cards into the machine and stores 

each parameter into the appropriate locations for use by sub­

sequent parts of the program. Following the entry of the 

problem parameters, the Ax̂  stores in which the capture de­

posits will be accumulated are cleared to zero and then, the 

main program is initialized. 

(AO) This is the beginning of a new history. The 

starting parameters, E0, ©Q, WQ, and xD are inserted respec­

tively for Ej__1, ©i_i, and x̂ _̂ , and the program goes to 

the geometry routine at (bo). 

The description of the remainder of the program, with the 

exception of the routines for punching out history termina­

tions and the final answers, refers to a general collision, i, 
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at any stage in the generation of a neutron history. 

Figure 3 - Geometry Routine. 

(bo) A random input card is read and using the first 

exponential deviate, Yi, from this card a random distance, x^, 

along the slab normal is calculated from 

Yi cos 6. , 

xi = ^ + 

The correct 2T(Ei_1) for the material being traversed is ob­

tained from stored tables. 

If xi <[ xQ, the reflection routine is entered at (EO). 

If xD <( Xj_ <( t̂ , xi_1 is replaced by Xj_, and the iron 

collision routine is entered at (FĈ ). 

If xj_ )> tj_, the neutron enters the first water layer and 

x^_2 is replaced by t]_. A new x^ is now calculated using the 

second exponential deviate from the random input card. This 

Xj_ is then compared with t^ and t^ to determine whether the 

neutron suffers a collision with water (t^ ( x. ^ t^), 

enters the first iron layer (x^ <( t^î, or enters the second 

iron layer (x^ )> tg) . The history is continued by means of 

the appropriate routine, depending upon which of these condi­

tions holds, with x^_2 replaced by Xj_, tj_, or tg respectively 

in the three instances. 

This process is continued as described earlier and as 

shown in Figure 3 until a collision, a reflection, or a trans­

mission takes place. The third random exponential deviate on 
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each card is used to calculate distances in the second iron 

layer, the fourth exponential deviate is used for the second 

water layer, and so on for the six slabs. 

Figure 4 - Iron Collision Routine. 

(FO) A number Z that is random on (-1, 1) is calcu­

lated using R̂ , and the nuclear species register is set to 8 

designating iron. 

If Ê _1 is larger than the upper energy limit, ETFe-> 

(normally taken as 1 ev) of the thermal energy region for iron, 

the nonsurvival or capture probability, ga ̂ Ei-1̂  , is obtained 
°r(ei-i) 

from stored tables. In the thermal region, cra(E^_1) is as­

sumed to vary as 1/ <v/Ê _j_ from a value of 2.5 barns at 0.025 

ev (2200 m/sec) (15). The capture probability in this in­

stance is calculated from 

ga (%i_l) = K 

fft̂ ei-l̂  at̂ ei-lwei-l 

where K is a constant determined by the 2200 m/sec absorption 

cross section, and CTt(Ê _1) is taken from the stored tables. 

The capture weight, pj_, to be deposited is calculated and 

added to the correct Ax̂  store as specified by Xj__]_. Ŵ _1 is 

then replaced by 

If the new is larger than WR the history is con­

tinued; otherwise, Russian Roulette is played using R̂ . The 

constant probability Russian Roulette technique shown in Fig­

ure 4 is the variation that was used most frequently in the 
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calculations. Histories that are terminated by the Russian 

Roulette routine enter the termination routine at (0). 

If Russian Roulette is not played or if the neutron sur­

vives the play, the cosine of the scattering angle in the 

center-of-mass system of coordinates is determined by a rou­

tine that depends upon the incident energy of the neutron. 

If is in the thermal energy region for iron, the 

thermal collision routine is entered at (T̂ ) . 

For eTfs C Ei-.i C EisoFe» (Appendix L) the scattering 

will be isotropic in the center-of-mass system and cos ̂  

set equal to z directly. For y Eisope* cos must be 

picked from the proper probability distribution (Appendix F). 

The number of terms in the differential elastic scat­

tering cross section expansion will vary, depending upon the 

value of e£_i (Appendix L) . For 2j__i EnFe, p(Z) = 

3 8 
Z>nxn, while for Ê  > BIZ , p(Z) = ZI iLxn, 
n»0 n=0 

If Ê _i y EiiFe# inelastic scattering is possible. The 

°in (ei-i) 
probability of iron inelastic scatter, r— , is obtained 

CJrp 

from the stored tables and compared with RQ. If RQ )> , 
Cfij» 

elastic scatter is specified. If RQ < flU an inelastic 
cri 

scattering collision is specified. Inelastic scattering is 

assumed to be isotropic in the center-of-mass system (11) so 

that cos f±* is set equal to Z directly for inelastic scat­
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tering events. 

If anisotropic elastic scattering occurs (EisoFe CEi~l 

<( Exipe or R0 > §̂ ), the cosine of the scattering angle is 

picked from the appropriate distribution, p(Z), by a rejection 

technique as described in Appendix J and as shown in Figure 4. 

After cos has been selected, the outgoing energy of 

an elastically scattered neutron is calculated from (Appendix 

C) ,  

= Ej.-! (0.98241923 + 0.017738077 cos 

+ 0.000160135 cos2̂ i*)2 

For an inelastically scattered neutron, the energy change 

is determined by 

Ei = Ei-1 - ey 

where Ê  is picked from one of six probability tables as out­

lined in an earlier section (straightforward model). Rg is 

used to pick a value of Ê  from the proper table. The table 

to be used is determined by Ej__]_ (Appendix K). 

The new energy, Ê , then replaces after which the 

angle between the new velocity of the neutron and the slab 

normal is calculated from (Appendix E), 

cos ©£ = sin sin ©£_i cos 0± + cos ̂  cos ©i_i 

where cos is a cosine of a random angle, taken from the 

random input data, and (Appendix D), 

1 + a cos ̂ j_* 
COS = 

 ̂1 + a2 + 2a cos 
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a = — = nuclear mass/neutron mass 
m 

Cos ei_1 is then replaced by cos 9̂ , a new random data 

card is read, and the geometry routine is entered again to 

continue the history. The geometry routine is re-entered at 

(0) , (Bl) , ̂2) , ̂3) , 10) j or ̂ 5) , depending upon xi-;L, as shown 

in Figure 4. 

Figure 5 - Water Collision. 

A number, Z, is picked at random from the interval 

(-1, 1) using Rg, as for an iron collision. 

ao 
The probability, — , that the collision is with an 

2̂° 

oxygen nucleus is found from the stored tables and compared 

with R0 in order to establish the nuclear species involved in 

the water collision. If R0 <( —— } the collision is con-
*%() 

sidered to be with oxygen; otherwise, the collision is assumed 

to be with a proton. The nuclear species register is set to 

89 for a hydrogen collision and to 899 for an oxygen collision. 

For oxygen collisions, only elastic scattering is possi­

ble at energies used in this study. Consequently, the iron 

collision routine is entered immediately at 1̂ 2) . 

When the nucleus involved in the event is a proton, the 

capture probability is found from stored tables if the inci­

dent energy is above the hydrogen thermal region, or, is cal­

culated from fjL = K if Eĵ  is less than Em (normally 
°H dH 

H 
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taken as 2 ev). The constant, K, is determined by the 2200 

m/sec absorption cross section as described earlier and cxH is 

obtained from stored tables. The capture cross section for 

hydrogen was taken to be 0.33 barns at 2200 m/sec (15). After 

the capture probability has been determined, the iron colli­

sion routine is entered at (Fi) . 

The capture deposit, if one is to be made, is made via 

the iron collision routine, and on the basis of the contents 

of the nuclear species register, an exit is made to (Wl) for 

hydrogen or to (Ŵ ) for oxygen. 

(wî) If <( eTjjj the thermal collision routine is 

entered at (t3) to determine the outgoing energy and the angle 

with the slab normal made by the outgoing neutron's velocity. 

If Ê _]_ y ET , cos is set equal to Z (isotropic scat­

tering angle in the center-of-mass system), and the new energy 

and scattering angle in the laboratory system of coordinates 

are determined by 

Ei = Ei-1 1 + a2 + 2a cos tj* = 35(i+2R2-l)Ei_1 = R2Ei_1 

(1 + a)2 

cos = 1 + a cos ̂ i = "/1 + cos f ± *  m  

1̂ + a2 + 2a cos 

where 

a - M = i 
m 

The iron collision routine is then entered at (F3) in order 
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to calculate cos and to continue the history. 

yfij) For oxygen collisions that occur with in the 

oxygen thermal energy region the thermal collision routine is 

entered at (t̂ I in order to establish the new energy and direc­

tion of travel. 

Oxygen collisions in which Ê _1 )> ETq (normally taken to 

be 2 ev) are elastic collisions and cos must be picked 

from the proper distribution depending upon Ê _̂ ; as was the 

case for iron collisions. 

The distribution of the cosine of the center-of-mass 

scattering angle is given by, p(Z) = Anxn £°r Eiso C 
n=0 0 

Ei-1 ( En- and by P(z) = 21 AnxI1 for Ei-1 > EIIn (Appendix 
0 n=0 u 

L) . For Ej__]_ <( Ê so , the scattering is isotropic in the 

center-of-mass system and cos is set equal to Z. 

In oxygen scattering events for which Ê _̂  )> Ej_go , cos 
*  ̂
is picked from the proper distribution by a rejection 

technique as described in Appendix I and as shown in Figure 5. 

The new energy and cos are calculated from 

-p _ -p 1 + a2 + 2a cos * 
Ei " Ei-1 — 

(1 + a)2 

1 + a cos * 
cos tfi = , 1 

N/7 + a2 + 2a cos 

a = — = nuclear mass/neutron mass 
m 
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The iron collision routine is then entered at (£J) to cal­

culate cos ©i and to continue the history. 

Figure 6 - Thermal Energy Collisions. 

When the velocity of a neutron in a history is reduced to 

a value that is of the same order of magnitude as the thermal 

velocity of the atoms of the material through which the neu­

tron is passing, complications enter the treatment of a neu-

tron-nucleus collision that are not present at higher neutron 

energies. 

First, the velocity of the bombarded nucleus due to its 

thermal motion is no longer small compared to the velocity of 

the incident neutron, i_.e_., the nucleus can no longer be as­

sumed to be at rest as was done at higher energies (Appendix 

B) . 

In addition, the energies of the chemical bonds between 

the nucleus and its neighbors becomes significant compared to 

the neutron's energy. The nucleus is no longer effectively 

unbound as far as the incident neutron is concerned and in­

elastic reactions between the neutron and these bonds become 

relatively important (16). 

Due to these factors, the methods and equations that were 

described earlier cannot be used to establish the changes in 

energy and direction of travel for a neutron suffering a col­

lision at low (or thermal) energies. 

In such collisions, a method presented by J. R. Triplett 
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et al. (14a) was used. The details of this method are pre­

sented in Appendices G and H. Let us now refer again to 

Figure 6. 

(To) The quantities 0.0012897 ̂ T/M and a = M/m are cal­

culated for iron where T = the temperature of the medium in °K 

M = the mass of iron in amu and m = the neutron mass in amu. 

© The values of 0.0012897 ̂T/M and M/m are calculat­

ed for hydrogen. 

(T̂ ) The values of 0.0012897 V T/M and M/m are calculat­

ed for oxygen. 

The magnitude of the scattered neutron's velocity is then 

calculated as is the angle that this velocity makes with the 

slab normal. The equations used for these calculations were 

presented earlier in the section on the straightforward model, 

and, as mentioned, are described in detail in the Appendices. 

The steps involved are outlined in Figure 6. 

After the new energy and angle with the slab normal have 

been established, the iron collision routine is entered at (F̂ ) 

to continue the history. 

Figure 7 - Termination Routine. 

The termination routine is entered at (Ê ) where a 4 

identifies a reflection, at (El) where a 5 identifies a trans­

mission, or at (E2) where a 6 is used to identify a Russian 

Roulette termination. 

Following the adjustment of the store identifying the 



www.manaraa.com

59 

type of termination, the values of and the 

contents of the termination identification store are punched 

out on a standard IBM card. The history termination card con­

tains the following: 

Columns 1-5: Problem Number 

Columns 6-10: History Number 

Columns 11-20: Type of Termination 

Columns 21-30: Cos = xx.xxxxxxxx 

Columns 31-40: Ej__i = x.xxxxxxxxx Mev 

Columns 41-50: = xx.xxxxxxxx 

Columns 51-60: Xj__]_ = xxx.xxxxxxx cm 

Columns 61-80: Meaningless 

After this punch-out, the history number is increased by 

1 and is compared with N, where N is the total number of his­

tories to be calculated. If the history number is less than 

or equal to N, a new history is begun at (Â ) in Figure 2. If 

the total number of histories that have been calculated is 

equal to N, the contents of the capture stores (Axj_ stores) 

are punched out and the problem stops. 

The capture store punch-out is in the following form: 

Columns 1-5: Problem Number 

Columns 6-10: N + 1 

Columns 11-80: 7 ten-digit words in the following form, 

rrrsssssss, where rrr = serial number of 

the store (001 to n) and sssssss - the 

contents of the store in the decimal form 

xx.xxxxx 
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OPTIONAL ROUTINES 

Isotropic Monoenergetic Source 

An isotropic monoenergetic source was supplied by setting 

cos 0O = 2R2 - 1. The flow sheet for this optional routine is 

shown in Figure 8. 

Monoenergetic Cosine Source 

The intensity of the radiation at the surface of a large 

volume source of nuclear radiation is often approximately 

proportional to the cosine of the angle at which the radiation 

emerges from the surface (17). This is rigorously true if the 

strength of the source is uniform throughout the volume of the 

source and if the attenuation of the radiation in the material 

of the source is exponential in character. 

Such a cosine surface source was used in most of the cal­

culations for this study. 

The probability distribution function of the emergent 

angle for a cosine source is given by 

p (©) dfl= ™ — cos © dA= -2 sin © cos © d© 
IT 

= 2 cos © dcos © = q(cos 6)dcos © 

(0 < cos © < 1) 

where p(6) is the probability per unit solid angle of emission 

at an angle ©, djfl is an increment of solid angle, and q(cos ©) 

is the corresponding probability distribution for the cosine 

of the emergent angle. 
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To pick a random sample from this distribution, we trans­

form to the uniform distribution, g(y), as described earlier. 

g (y) =1 for 0 < y < 1 

=0 elsewhere 

Application of the "Golden Rule" gives 

_ cos © 
Q(cos ©) = P(cos ©' < cos ©) = / q(cos ©1)dcos ©' = 

~ 0 

cos2© = P(y' < Y) =  f  g(y')ây' = dy' = y = 

4) Jo 

G(y) = R 

where R is a number selected at random from the interval 

(0, 1). R constitutes a random sample from G(y) and from 

Q(cos ©), Thus, we set 

cos2© = R 

or 

cos © = ̂  

The routine in Figure 9 was used to generate a monoener­

getic cosine source. 

Isotropic Thermal Source 

An isotropic thermal neutron source was generated by 

selecting EQ from the Maxwell-Boltzmann distribution of neu­

tron energies (18) and by setting cos ©Q equal to 2Rg - 1. 

The Maxwell-Boltzmann energy distribution is given by 

-EABT , 

n ( E , a E  =  i§ôV2e  E % d B  
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where n = total number of neutrons/cm3 and n(E)dE = neutrons/ 

cm3 with energy in dE at E. 

The energy range from 0 to 10 electron volts was divided 

into 48 intervals as shown in Table 1 and the cumulative Max-

well-Boltzmann distribution, Ĉ , was calculated for each 

energy at 298°K. 

(Note that P (E. _ ) < E E)dE) . 
l—l — 

These cumulative probabilities are also given in Table 1. 

To specify E0, a random number, R̂ , from a random input 

card was compared with the cumulative distributions given in 

Table 1. The energy corresponding to the first Ĉ  larger than 

or equal to R]_ was taken to be EQ. (This is the same method 

used to select interaction types as described in the section 

on the straightforward model.) 

The flow sheet for the isotropic thermal neutron source 

routine is shown in Figure 10. 

The number of neutrons that penetrate to a given distance, 

x, into the array of Figure 1 from the source, becomes small 

as x becomes large. The number of capture deposits at such 

distances is therefore small and the variance, or statistical 

uncertainty, of the results is large. There is, therefore, a 

Uniform First Collision Weighting 
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Table 1. Cumulative Maxwe11-Bo1tzmann energy distribution 

Ejt(ev) C ±  Eji (ev) Ci 

0.001 0.00500 0.105 0.95527 
0.002 0.01496 0.110 0.96212 
0.003 0.02746 0.115 0.96832 
0.004 0.04159 0.120 0.97320 
0.005 0.05707 0.125 0.9725 

0.010 0.14505 0.130 0.98055 
0.015 0.23886 0.135 0.98530 
0.020 0.33029 0.140 0.98567 
0.025 0.41573 0.145 0.98766 
0.030 0.49353 0.150 0.98942 

0.035 0.56315 0.155 0.99080 
0.040 0.62497 0.160 0.99202 
0.045 0.67911 0.165 0.99294 
0.050 0.72609 0.170 0.99377 
0.055 0.76669 0.175 0.99444 

0.060 0.80165 0.180 0.99502 
0.065 0.83177 0.185 0.99562 
0.070 0.85755 0.190 0.99563 
0.075 0.87937 0.200 0.99565 
0.080 0.89787 0.250 0.99575 

0.085 0.91358 0.350 0.99725 
0.090 0.92689 0.500 0.99875 
0.095 0.93807 1.000 0.99900 
0.100 0.94722 10.000 0.99999 

limit to the thicknesses that may be examined meaningfully. 

One means of extending this limit is to take advantage of 

the fact that the distribution of first collisions is known 

exactly. This makes it possible to devote a larger fraction 

of the computing time to deeply penetrating histories and to 

correct the final answers accordingly. This is done at the 
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expense of increasing the variance of the shallow penetration 

results, but the net effect is a significant increase in the 

limit of dimensions that may be studied. 

The method proceeds as follows. Instead of allowing the 

first collisions to be picked according to the exponential 

attenuation law (Appendix A), the first collisions are picked 

uniformly throughout the array. The weight of each neutron 

is then adjusted so that the average weight of neutrons having 

first collisions at any distance into the assembly is un-

"2mX" changed. In other words, instead of following Ne" ̂  dx neu­

trons of weight WD that suffer first collisions in dx at x 
-"2 tX" 

(total weight of WcNe dx), we follow Ndx/tg neutrons with 

first collisions in dx at x and let each of these have start-
-"ZmX" 

ing weight WQe tg. Here, "Ẑ x" is the number of relax­

ation lengths from the starting point to x. With this meth­

od, the number of events is approximately constant throughout 

the array, but the weight of the capture deposits is adjusted 

so that the net results are, on the average, unchanged. 

The flow sheet for this routine is shown in Figure 11 for 

a cosine source. 
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TEST RUNS 

If we ignore errors in the basic cross section data, the 

only approximations in the equations and techniques presented 

in the previous sections occur in the low energy or "thermal" 

treatment as described in Appendices G and H. 

As pointed out in Appendix H, the most important low 

energy events are neutron-proton collisions. The relatively 

low frequency of thermal neutron-oxygen collisions and the 

usually small energy changes accompanying thermal neutron-

iron collisions cause the approximations made in the treatment 

of these events to be of relatively minor importance. Energy 

changes accompanying neutron-proton collisions are, on the 

other hand, quite important. Since the capture cross sections 

are inversely proportional to the square root of the neutron 

energy, the capture distributions are sensitive to the thermal 

neutron energy spectrum and, hence, to approximations made in 

the treatment of thermal neutron-proton collisions. 

For this reason it was considered essential, before pro­

ceeding to the main calculations, to make a check of the 

thermal neutron energy spectrum and capture distribution 

produced by the program for water. 

In an early version of the final program a cut-off weight, 

Wc, was used to terminate neutron histories. This version of 

the program also punched out the values of the state variables 

(Ei-i, xi-i* cos ©i-i, for each collision. This program 
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made it possible to generate by fixing Wc at zero, an inter­

minable neutron history, with the state variables for each 

collision being punched out on cards. 

Such a history in water (with the thicknesses of the iron 

slabs set to zero) reaches thermal equilibrium after 10 to 40 

collisions. By counting the number of collisions (after 

equilibrium is reached) that occur in each of several speci­

fied energy intervals, an energy spectrum for the collisions 

can be obtained. This energy distribution for thermal neutron 

collisions constitutes a sample of the equilibrium thermal 

neutron energy spectrum produced by the program for water. If 

the number of events is large, the sample should give a good 

measure of this spectrum. 

It should be noted that all of the collisions in the 

above frequency count are given equal weight. This is tanta­

mount to assuming that the capture cross section of water is 

zero, since there is no weight reduction from collision to 

collision? i_.,e., there is no capture. The thermal neutron 

capture cross section of water is small however, and the ener­

gy spectrum in actual water does not differ greatly from the 

Maxwellian spectrum that would exist in water with zero cap­

ture cross section (19), (20). The Maxwellian energy distri­

bution is given by 

-E/k T , 
n (E) dE = -2Z2 e E dE 

(?rkBT) 3/2 
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This distribution was described earlier in the section on 

optional routines. 

A series of spectrum runs, as just described, was cal­

culated using different schemes of effective proton mass vs 

neutron energy in each run. These runs consisted of 3000 to 

5000 collisions each. Comparison of the resulting spectra 

with the Maxwellian distribution was used as a basis for 

choosing the effective proton mass scheme to be used in the 

program. The mass schemes tested are given in Table 2. These 

Table 2. Effective proton masses (in amu) vs incident neutron 
energy 

I II III IV 
Reference Empirical Triplett et al. (Described 

E(ev) (20) scheme (22) in text) 

10.0 1.9 1.0 1.0 1.0 
1.0 II 1.9 1.0 1.4 
0.1 II 1.9 1.25 2.0 
0.074 II 1.9 1.55 2.8 
0.049 II 5.0 1.98 3.6 

0.035 II 5.0 2.40 4.6 
0.028 II 5.0 2.65 5.0 
0.025 II 5.0 2.90 5.6 
0.021 It 10.0 3.10 6.0 
0.019 II 10.0 3.40 6.6 
0.017 It 10.0 3.54 7.6 
0.014 II 10.0 3.92 9.0 
0.012 II 18.0 4.42 10.0 

0.009 II 18.0 5.0 13.0 
0.007 II 18.0 6.3 17.0 
0.005 It 18.0 7.7 23.0 
0.003 II 18.0 10.0 32.9 
0.001 It 18.0 15.05 65.0 
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masses were obtained from the following sources: 

I. Brown, H. Dean. Neutron energy spectra in 

water (20). 

II. An empirical scheme of masses devised to in­

crease with decreasing neutron energy from 1.9 

amu at 1 ev (20) to 18 amu at 0.001 ev (21). 

III. Triplett, J. R., et al. (22). These masses 

were based upon reference (23). A graph of 

these effective proton masses vs neutron 

energy is given in Appendix H. 

IV. These empirical masses are roughly 2A - 1, 

where the A are the effective masses from 

reference (23), modified somewhat at lower neu­

tron energies. 

The spectra from these runs are compared with the Max-

wellian spectrum in Figures 12 and 13. In Figures 12 to 14 

p(E) is the probability per unit energy that a neutron will 

have energy in dE at E, i_.ê ., p(E) = n(E)/n. As can be seen 

from the figures, only the empirical proton masses of scheme 

number IV lead to a Maxwellian neutron spectrum for water. 

In order to check the masses of IV at temperatures other 

than 298°K, a spectrum run was made with the masses of IV and 

a temperature of 375.5°K. The thermal neutron spectrum from 

this run is compared with the Maxwellian spectrum in Figure 

14. The agreement with the Maxwellian curve in Figure 14 is 
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Figure 12. Monte Carlo produced thermal neutron spectra in 
water for various effective proton mass schemes 
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Figure 13. Monte Carlo produced thermal neutron spectrum in 
water for effective proton mass scheme #IV at 
298°K 
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Figure 14. Monte Carlo produced thermal neutron spectrum in 
"atê for effective proton mass scheme #IV at 
3/5*5 K 
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poorer than that in Figure 13. However, the two curves in 

Figure 14 have the same shape, and the slight shift of the 

Monte Carlo curve could be corrected by a few relatively small 

empirical changes in the effective mass scheme. 

Since temperature effects were not included in this 

study, it was decided to use effective mass scheme number IV 

and to make the remainder of the calculations at a temperature 

of 298°K. 

A final test of the low energy routine and of the ef­

fective proton mass scheme IV was made by generating an iso­

tropic thermal neutron source, as described earlier, at one 

surface of a large water layer (iron thicknesses set to zero). 

A total of 200 histories was generated in about 10 hours. 

Points on the capture distribution curve were then calculated 

from 

p(x) = the probability of capture per unit distance per 

incident neutron = P(x)/AxN 

where 

P(x) = the weight deposited in Ax at x by the calculation 

x = the mid-point of Ax 

N = the total number of histories in the calculation 

The capture distribution for this problem should be given 

adequately by simple diffusion theory (9) (see the earlier sec­

tion on neutron transport). Diffusion theory gives 
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e
-Kx -0.3937 x 

P(x) = 2a0"(x) = 2a -gxQ = 0.1969 e 

where 

0(x) = the thermal neutron scalar flux per unit source 

Za = the macroscopic cross section for capture of 

thermal neutrons in water = 0.02201 crn--̂  (8) 

D = the thermal neutron diffusion coefficient for 

water = 0.142 cm (8) 

K2 = Za D 

The Monte Carlo data points were fitted by the function 

p(x) = A eB x, as described in Appendix N, with the following 

result, 

p(x) = 0.1762 e~0'3920 X 

This curve and the Monte Carlo data are compared with the dif­

fusion theory capture distribution in Figure 15. The Monte 

Carlo curve agrees with the theoretical curve even more close­

ly than might be expected from the small number of histories 

that was generated. 

An albedo, or fraction of incident neutrons that were re­

flected, was calculated from the Monte Carlo results. The 

Monte Carlo albedo was 0.823, compared with the experimental 

thermal neutron albedo for water (9) of 0.821. 

An attempt was made to find some theoretical or experi­

mental results that might be used to check the high energy 

portion of the Monte Carlo program. This search was not 
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Figure 15. Capture distribution from a plane isotropic 
thermal neutron source at one surface of a large 
water slab (x = distance from the plane source) 
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successful. As pointed out earlier, such a problem is not 

amenable to solution with the usual mathematical methods. It 

appears also that no directly comparable experimental results 

are available. Therefore, the high energy portion of the 

program was not checked with a test problem. It would be ex­

pected, however, that results produced by this portion of the 

program would be as reliable as the cross section data that 

were used in the program. 
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PRELIMINARY RUNS 

Several preliminary problems were run in order to estab­

lish the problem parameters (slab geometry, angle of incidence, 

incident energy) that were most important. These runs also 

served to define the ranges of problem parameters that were 

practical for study with the program. 

The principle limitations of the program were in the slab 

thicknesses and the source energies that could be used. The 

upper limit for the source energy was 4.65 Mev. This limit 

was imposed by the lack of storage space for the cross section 

data necessary for additional energy groups (Appendix L). Be­

cause of the relatively short mean free path of thermal neu­

trons in water and the low neutron capture cross section in 

water, the running time per problem was very sensitive to the 

thicknesses of the water layers. One attempt was made to run 

a problem in which the water layers were two inches thick. 

This problem was abandoned after 2.5 hours with only 60 his­

tories completed. All subsequent problems used water thick­

nesses of one inch or less. This (1") appeared to be an ap­

proximate upper limit for the thickness of water that could be 

studied. Some typical running times will be given later and 

it will be seen that the dimensions of the iron layers are 

much less important in determining the computing time re­

quired for a given problem. 

The Monte Carlo capture curves that will be presented in 
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the remainder of this paper were obtained from the following 

curve fits (Appendix N): 
o 

Water layersr p(x) = A + Bx + Cx 

First iron layer: p(x) = aê x 

Other iron layers: p(x) = acosh P(x-xQ) 

In fitting all of the curves, the origin of the x axis 

was taken as the left face of the particular slab being con­

sidered. This was done for convenience in both the curve fit­

ting calculations and in the subsequent presentation of the 

correlations for the curve parameters. Transformation to 

another coordinate system, [p(x'), x'], is accomplished easily 

by substituting x = x1 - x# into the original equation, where 

x<j is the displacement of the left face of the slab in the new 

coordinate system. 

As pointed out earlier, p(x) is the probability of cap­

ture per unit distance per incident neutron, and the data 

points for the curve fits were obtained from 

p(x) = P (x) /AxN 

where p(x) are the "observed" points to be fitted, P(x) is the 

weight deposited in Ax at x by the calculations, x is the mid­

point of Ax and IT is the total number of histories in the run. 

The first problem that was calculated was: 

tx = 1" t2 = 2" t3 = 3" 

t4 = 4" t5 = 7" t6 = 10" 

Eq = 1 Mev ©Q = 0° x0 = 0 
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Ax = 0.1" T = 298°K 

The resulting fitted capture curves are presented in Figure 

16. This problem consisted of 400 histories and required 11 

hours of computing time. 

An attempt was made to estimate the variance of the 

curves in Figure 16 by dividing the data into four groups of 

100 histories each and fitting curves to each of these groups 

of histories. The resulting four curves in each layer con­

stituted four independent estimates of the final curve so that 

a variance for each curve could be calculated in the usual 

manner, 

2 4 2 
s (x) = 2L [Pi(x) - p(x) ] /3 = the variance of the curve 

1=1 1 

at x 

The pĵ (x) are the four independent estimates of the 

capture probability at x, and p(x) is obtained from the fitted 

400-history curve. The resulting coefficients of variation, 

where the coefficient of variation is defined as the standard 

deviation at x divided by p(x), were between 10% and 35%. 

This method of estimating the statistical uncertainty of 

the results was not satisfactory. The small number of degrees 

of freedom, i,.e_., the small number of independent estimates of 

each curve meant that the variance estimates were inaccurate. 

In addition the curve fitting was very time-consuming. The 

computing time required with this procedure is not justified 
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Figure 16. Capture distribution from a 1 Mev normally incident source at 
x = 0 
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by the quality of the results. It was decided to calculate 

the statistical uncertainties only for the data points, p(x), 

in subsequent runs. The variances of the fitted curves are 

smaller than the variances of the p(x), but the magnitude of 

this improvement is very difficult to determine. This point 

will be discussed further in a later section. 

The most uncertain points in the curves of Figure 16 are 

the surface points in the second iron layer. This also ap­

peared to be characteristic of subsequent runs. The values 

of surface points in thin iron slabs in the interior of such 

an array are very sensitive to statistical fluctuations in the 

number of thermal neutrons diffusing into the iron from the 

adjacent water layers. Some improvement in the determination 

of these points can be accomplished through the use of the 

statistically more accurate water capture data at the slab 

boundaries, as will be pointed out later. However, at present 

suffice it to say that the estimated capture rates at the 

interior iron surfaces in Figures 16 to 21 may be in error by 

20 to 40%. Comparisons at these points of the results of 

other runs with the results in Figure 16 should be made with 

this fact in mind. 

The data in the interior of a thicker iron slab such as 

the third iron layer in Figure 16 influence the end points of 

the capture curve to a greater extent than do the data in the 

interior of thinner layers. Thus, the end points of the curve 
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in the third iron layer in Figure 16 are more accurately de­

fined than those for the curve in the second iron layer. 

The second problem that was run was identical to the 

problem just described with the exception that the water was 

poisoned with 2.0 w/o boric acid. Running time for 400 his­

tories in this problem was 7 hours. The resulting capture 

distributions are compared with the results of the unpoisoned 

run in Figure 17. Capture rates were reduced in the iron 

layers and increased in the water layers as expected. The 

usefulness of data on poisoned water systems did not appear 

to be such that further poisoned water runs were merited in 

this study? therefore, this was the only such problem that was 

run. The primary reason for including a description of this 

run is to point out the reduced running time required for 

poisoned problems. The water thickness limitation is re­

laxed somewhat for such problems. 

Neutron scattering in the laboratory system of coordi­

nates is anisotropic for iron and oxygen at higher energies 

and for hydrogen at all energies. It would be expected, 

therefore, that the capture distribution through an array of 

iron and water slabs from neutrons impinging upon one surface 

of the array would be dependent upon the angle of incidence of 

the source neutrons, i,.,e., upon the angular spectrum of the 

source. 

A series of runs was calculated with which to examine 
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Figure 17. Comparison of capture distributions in poisoned 

and unpoisoned systems from a 1 Mev normally 
incident source at x = 0 



www.manaraa.com

85 

this dependence. The following basic problem was run with 

three different source angular spectra. 

tx = h" t2 = 1" t3 = lh" 

t4 = t5 = t6 = 2" E0 = 1 Mev xQ = 0 

Ax = 0.1" T = 298°K 

The three source angular spectra were: a normally incident 

source (0O = 0), an isotropic source, and a cosine source. 

Running times for these problems were 6 to 9 hours for 2000 to 

3000 histories. The resulting capture curves are compared in 

Figure 18. A small decrease is evident in the distribution 

resulting from the normally incident source as compared with 

the distributions from the other two sources. The curves are 

the same for the isotropic and the cosine sources within 

statistical uncertainties. Coefficients of variation of the 

data points in these runs are given in Table 3. 

A final run in this series was made using the parameters 

of the first problem that was described in this section 

(Figure 16) and a cosine source. This calculation also em­

ployed the uniform first-weighting technique described in the 

section on optional routines. Running time in this problem 

was 12.7 hours for 400 histories. The resulting capture 

curves are compared with the results for the normally incident 

source (Figure 16) in Figure 19. The cosine source resulted 

in larger capture rates in the first three layers than the 

normally incident source. This increase, although larger than 
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Figure 18. Effect of source angular spectrum upon the capture 
distribution—1 Mev source at x = 0 
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Figure 19. Effect of source angular spectrum upon the 
capture distribution, 1 Mev source at x = 0 
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Table 3. Coefficients of variation of data points from the 
source angular spectrum runs in the h" geometry 
x » 0 at the left face of the array 

x(in.) 

normally 
incident 
source 

cosine 
source 

isotropic 
source 

0.05 0.243 0.120 0.251 
0.15 0.252 0.228 0.151 

Fe 0.25 0.227 0.180 0.182 
0.35 0.222 0.184 0.145 
0.45 0.216 0.228 0.120 

0.55 0.181 0.118 0.102 
0.65 0.185 0.099 0.072 

h2o 0.75 0.179 0.083 0.102 h2o 
0.85 0.177 0.116 0.105 
0.95 0.164 0.071 0.092 

1.05 0.172 0.051 0.109 
1.15 0.168 0.182 0.121 

Fe 1.25 0.192 0.066 0.141 
1.35 0.153 0.136 0.126 
1.45 0.187 0.128 0.266 

1.55 0.195 0.141 0.119 
1.65 0.178 0.177 0.086 

h2o 1.75 0.259 0.123 
1.85 0.319 0.141 
1.95 0.304 0.128 

the increase in the smaller geometry, was considerably smaller 

than the changes in the capture rates that resulted from 

changing the geometry. This latter effect can be seen by com­

paring Figures 18 and 19. 

It should be pointed out that the fractions of neutrons 

that are reflected and transmitted are more sensitive to 

changes in the source angular spectrum than are the capture 

distributions. The normally incident, cosine, and isotropic 
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sources in the problems of Figure 18 resulted in reflection 

fractions of 0.209, 0.353, and 0.442 respectively, while the 

transmission fractions for these three problems were 0.743, 

0.602, and 0.514 respectively. 

Most sources encountered in actual reactor applications 

will approximate cosine or isotropic sources much more close­

ly than normally incident sources. Therefore, on the basis 

of the results just described, it was decided to use cosine 

sources in the remainder of the calculations. The results 

should apply quite well to problems with isotropic sources and 

reasonably well to thin slabs with normally incident sources. 

The final series of preliminary runs was designed to ex­

amine the effect of reducing the number of layers in the 

array. A repeat of the first problem (Figure 16) was run in 

which the thicknesses of the third water layer and the third 

iron layer were set to zero. The capture distributions in the 

remaining layers are compared in Figure 20 with the results 

in the corresponding layers for the first problem. Figure 21 

shows a similar comparison between the results from a 1 Mev 

cosine source using six h" layers and results from the same 

problem with the thicknesses of the last iron and the last 

water layers set to zero (this latter problem is the same 

problem for which results were presented in Figure 18). 

The small effect upon the capture rates of removing the 

last two layers of the larger geometry as contrasted with the 
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Figure 20. Effect upon the capture distribution of removing 
the third iron and third water layers-—1 Mev 
normally incident source at x = 0 
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Figure 21. Effect upon the capture distribution of removing 
the third iron and third water layers—1 Mev 
cosine source at x = 0 
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large effect of removing the last two layers of the h" 

geometry can be explained as follows: In the first instance, 

the last two layers are separated from the first four layers 

by a layer of water that is large (1") compared with the 

thermal neutron mean free path (0.1" to 0.2"). Thus, inter­

action between the last two layers and the first three layers 

is relatively small for this geometry. On the other hand, 

interaction in the smaller geometry between the last two 

layers and the first three layers through the intermediate %" 

water layer is significant. Thus, when the last two layers 

are removed from the smaller array, many of the neutrons that 

otherwise would diffuse back to the first three layers from 

the last two layers are lost by transmission. Reduced capture 

rates in the first three layers result. 

The results of these preliminary runs were used as a 

guide in outlining the principle problems that were run. Be­

cause of the large variation with energy of the neutron mean 

free path in the materials, it was recognized from the in­

ception of this project that the capture distributions would 

be sensitive to changes in the energy of the source neutrons. 

In addition, the geometry, i_.ê ., the number and sizes of the 

layers, also was expected to be important in determining the 

capture rates throughout the array. This last point was sub­

stantiated in the preliminary runs. Finally, the source 

angular spectrum would be expected to affect the capture 
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distributions. The preliminary runs indicated that this lat­

ter factor is considerably less significant than the first 

two (source energy and geometry). 

On the basis of these considerations it was decided to 

concentrate in the remainder of this study upon the effect of 

the source energy. The geometry effect does not lend itself 

as readily to examination as does the effect of varying the 

source energy. This is particularly true in view of the 

limitations of the IBM-650 and of the program that was used in 

this work. Since the scope of this project did not admit the 

comprehensive examination of both source energy effects and 

geometry effects, a compromise was made in favor of the 

energy effects by examining in some detail the effect of 

source energy upon the capture distributions for two different 

geometries. The results of these calculations are presented 

in the following sections. 
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PRINCIPLE RUNS 

In the principle calculations made in this study, the 

dependence of the capture distribution upon source energy was 

examined. Monoenergetic cosine sources of varying energies 

were used with two different geometries. These geometries 

were: I. six h inch layers, and II. six 1 inch layers. The 

temperature in all of these runs was 298°K, and the Ax spacing 

was 0.1". Source energies were 4.5, 1.0, 0.1, 0.04, 0.02, and 

0.01 Mev for geometry I, and 4.5, 1.0, 0.1, 0.04, 0.025, and 

0.01 Mev for geometry II. Running times were between 9 hours 

for 1400 histories using a 4.5 Mev source and geometry I,and 

12 hours for 400 histories using a 0.025 Mev source and 

geometry II. Longer running times were required for larger 

water thicknesses and lower source energies. 

Coefficients of variation were calculated for the data 

points by dividing the total number of histories into 16 to 

32 groups and using these 16 (to 32) independent estimates of 

each data point to calculate the variances. Each problem was 

run by calculating n groups of N histories each, n = 16 to 32, 

where n times N is the total number of histories calculated 

for the problem. The n groups of output were then sorted into 

m groups of cards (n cards per group) with each group contain­

ing the same Ax's. The number m is equal to the total number 

of cards required to punch out the contents of the Ax stores 

at a rate of seven Ax's per card. These sorted cards were 
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used as input to an analysis of variance program obtained from 

the Iowa State University Statistical Laboratory. The output 

of this program gave the variance of the capture rate, p(x), 

in each Ax. Tables 4 and 5 show the resulting coefficients of 

variation for the data points. These data points were used in 

fitting the first set of capture curves that will be discussed 

in the following paragraphs. 

After the program output cards had been used to calculate 

the point variances, the total capture weight, P(x), deposited 

in each Ax interval was determined by summing the n contribu­

tions to each interval. This was done with an IBM-402 tabu­

lating machine. 

The capture probability points, p(x), were calculated from 

p(x) = P(x)/Ax Nt 

where NT is the total number of histories in the problem. 

Capture probability curves using the functions presented 

earlier, were then fitted to the p(x). 

It should be pointed out that all of the data points in a 

given layer are used to fit the capture curve at a given x; 

therefore, the effective number of events used to establish a 

curve at a given x is larger than the number of events used 

to establish a single p(x). This reduces the variances of the 

curves as compared to the variances of the data points. The 

amount of this reduction is very difficult to determine, how­

ever, and consultation with members of the ISU Statistical 
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Table 4. Coefficients of variation for data points, p(x), in geometry I 

E (mev) 
x (in) 4.5 H

 

O
 

0.1 0.04 0.02 0.01 

0.05 0.3845 0.2006 0.2390 0.2232 0.2242 
0.15 0.2402 0.1794 0.1499 0.2037 ' not 0.2012 

Fe 0.25 0.3000 0.2748 0.1683 0.1667 0.1759 
0.35 0.3683 0.2092 0.1653 0.1422 calculated 0.1844 
0.45 0.2588 0.2197 0.1366 0.1716 0.1755 

0.55 0.1977 0.1929 0.1098 0.1274 0.1332 
0.65 0.1918 0.1291 0.1258 0.1165 0.1072 

h2o 0.75 0.2010 0.1447 0.0904 0.1076 0.1080 h2o 
0.85 0.1842 0.1140 0.1112 0.1315 0.1100 
0.95 0.1304 0.1383 0.1202 0.1190 0.1113 

1.05 0.1599 0.1562 0.1086 0.1062 0.1258 
1.15 0.1522 0.1530 0.1035 0.1421 0.1402 

Fe 1.25 0.1298 0.1776 0.1079 0.1847 0.1105 
1.35 0.1546 0.1658 0.1285 0.1168 0.1074 
1.45 0.1622 0.1719 0.1307 0.1251 0.1224 

1.55 0.1433 0.1578 0.0894 0.0994 0.1156 
1.65 0.1446 0.1948 0.1052 0.1179 0.1312 

H2o 1.75 0.1914 0.1376 0.1318 0.0923 0.1161 
1.85 0.1445 0.1490 0.1201 0.0912 0.1234 
1.95 0.1512 0.1770 0.1063 0.1207 0.1181 

2.05 0.1795 0.1933 0.1610 0.1589 0.1582 
2.15 0.1754 0.1353 0.1288 0.1277 0.1675 

Fe 2.25 0.1680 0.1535 0.1535 0.1593 0.1805 
2.35 0.1525 0.1280 0.1555 0.1573 0.1980 
2.45 0.1755 0.1648 0.1691 0.1919 0.1828 
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Table 4. (Continued) 

x(in) 4.5 1.0 0.1 
E (mev) 

0.04 0 . 0 2  0.01 

HgO 

2.55 
2.65 
2.75 
2.85 
2.95 

0.1720 
0.1947 
0.2014 
0.1989 
0.1980 

0.1664 
0.1625 
0.1692 
0.1878 
0.2604 

0.1472 
0.1412 
0.1453 
0.1421 
0.1611 

0.1791 
0.1710 
0.1726 
0.2192 
0.2408 

0.1787 
0.1729 
0.2437 
0.2778 
0.2631 
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Table 5. Coefficients of variation for data points, p(x), in geometry II 

E (mev) 
x(in) 4.5 1.0 0.1 0.04 0.025 0.01 

Fe 

h2o 

Fe 

0.05 0.3565 0.8143 0.2177 0.2337 not 0.3286 
0.15 0.2905 0.3273 0.1928 0.2433 0.1439 
0.25 0.3628 0.2670 0.2503 0.2089 calculated 0.1829 
0.35 0.3250 0.1547 0.2187 0.1556 0.1751 
0.45 0.1681 0.3005 0.1675 0.1835 0.1880 
0.55 0.2778 0.1719 0.2325 0.1492 0.1373 
0.65 0.3174 0.1731 0.1759 0.1288 0.1385 
0.75 0.2723 0.1590 0.1773 0.1210 0.1257 
0.85 0.3087 0.2123 0.1875 0.1215 0.1570 
0.95 0.2173 0.1425 0.1584 0.1629 0.1550 

1.05 0.1829 0,1662 0.1468 0.1697 0.1058 
1.15 0.1991 0.1462 0.1325 0.1421 0.1048 
1.25 0.1794 0.0835 0.1214 0.1261 0.1149 
1.35 0.1855 0.2217 0.0857 0.1113 0.1005 
1.45 0.1624 0.1827 0.0846 0.1410 0.1145 
1.55 0.2313 0.1456 0.1281 0.0918 0.1305 
1.65 0.1935 0.1112 0.1172 0.0871 0.1287 
1.75 0.1714 0.1444 0.1119 0.0958 0.0936 
1,85 0.1700 0.1514 0.1128 0.0980 0.1219 
1.95 0.1501 0.1383 0.1197 0.1009 0.1055 
2.05 0.1543 0.1730 0.1212 0.1065 0.1096 
2.15 0.2336 0.1964 0.1418 0.1325 0.1436 
2.25 0.1487 0.1575 0.1544 0.1296 0.1279 
2.35 0.1695 0.2574 0.1335 0.1266 0.1433 
2.45 0.1608 0.3302 0.2273 0.1144 0.1846 
2.55 0.1453 0.1314 0.1542 0.1317 0.1794 
2.65 0.2093 0.1435 0.1234 0.1430 0.1307 
2.75 0.1409 0.1438 0.1411 0.1509 0.1452 
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Table 5. (Continued) 

E (mev) 
x(in) 4.5 1.0 0.1 

Fe 

HgO 

Fe 

h2o 

2.85 0.1325 0.1235 0.1792 
2.95 0.2013 0.1794 0.1535 

3.05 0.1527 0.2174 0.1622 
3.15 0.1677 0.2705 0.1825 
3.25 0.1689 0.1452 0.1969 
3.35 0.2247 0.1856 0.1596 
3.45 0.1602 0.1626 0.1952 
3.55 0.1645 0.1742 0.1778 
3.65 0.1745 0.1941 0.1756 
3.75 0.2069 0.1721 0.2315 
3.85 0.2276 0.1064 0.2060 
3.95 0.1858 0.1497 0.2169 

4.05 0.2037 0.1515 0.2986 
4.15 0.1877 0.2012 0.2711 
4.25 0.2324 0.1701 0.2855 
4.35 0.1397 0.2009 0.2745 
4.45 0.1332 0.1320 0.2743 
4.55 0,1836 0.2290 0.2304 
4.65 0.1761 0.1659 0.2870 
4.75 0.1495 0.0967 0.2433 
4.85 0.1473 0.2643 0.3059 
4.95 0.2165 0.1442 0.3016 

5.05 0.1977 0.2094 0.3252 
5.15 0.2051 0.1692 0.3910 
5.25 0.2119 0.2446 0.5111 
5.35 0.2673 0.2714 0.6875 

0.04 0.025 0.01 

0.1580 
0.1543 

0.1437 
0.1727 
0.1572 
0.1890 
0.1783 
0.1684 
0.1909 
0.1668 
0.1743 
0.1627 

0.2442 
0.1892 
0.2530 
0.2983 
0.2651 
0.2864 
0.2707 
0.2842 
0.2361 
0.3642 

0.4194 
0.5829 
0.3591 
0.4275 

0.1384 
0.1888 

0.1280 
0.1750 
0.1698 
0.1863 
0.1328 
0.1787 
0.2252 
0.1955 
0.2305 
0.2607 

0.2446 
0.3504 
0.2563 
0.2648 
0.4077 
0.3116 
0.4134 
0.4249 
0.3243 
0.3180 

0.3642 
0.3843 
0.3943 
0.4475 
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Table 5 (Continued) 

E (mev) 
x(in) 4.5 1.0 0.1 0.04 0.025 0.01 

Ho0 

5 .45 
5.55 
5.65 
5.75 
5.85 
5.95 

0.3318 
0.2568 
0.3511 
0.2478 
0.2974 
0.2555 

0.3465 
0.4419 
0.2983 
0.4604 
0.4552 
0.4670 

0.5402 
0.4325 
0.3259 
0.4632 
0.4918 
0.8854 

0.4732 
0.4471 
0.6355 
0.7664 
0.4863 
0.4423 

0.6374 
0.5736 
0.5201 
0.4511 
0.7086 
0.5393 
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Laboratory failed to produce a method of doing this with a 

practical amount of computing time. It can be stated only 

that the curves and correlations resulting from the data 

processing described in this section have less statistical un­

certainty than the statistical uncertainties, as presented in 

Tables 4 and 5, of the original data points. 

The capture distributions are most conveniently corre­

lated as a function of the logarithm of the source energy. A 

so-called "lethargy" was used in the remainder of the work, 

where the lethargy of a neutron is defined by 

U = lethargy = In (EQ/E) 

Here, E is the energy of the neutron and E0 is a convenient 

reference energy. A reference energy of 10 Mev was used in 

this work to insure that all lethargies would be positive. 

Capture probability points from the first curve fits 

(as a function of distance into each layer) were cross-plotted 

as a function of source lethargy at constant x. This was done 

for the mid-point of each Ax interval and for the surface 

points of each layer. These points were then fitted as a 

function of source lethargy by means of a fourth degree poly­

nomial 

4 
p(U) = 5Z AjU1 

i=0 

where p(U) is the capture probability per unit distance per 

incident neutron (at a given x) for a source of lethargy U. 
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The program used for these fits was obtained from the IBM-650 

program library. Representative samples of the resulting 

curves are shown in Figures 22 and 23, along with the points 

that were used in the fitting calculations. The anomalous 

scatter in the surface points (x = 0 and 0.5 for geometry I 

and x = 0 and 1.0 for geometry II) should be noted. These 

curves will be discussed later. The smoothed lethargy curves 

were used to obtain new capture probability points as a func­

tion of x. (Note that, in Figures 22 and 23, x = 0 at the 

left face of each layer). 

Throughout the calculations the uncertainty of the end 

points of the capture distribution in a given iron layer was 

of concern. The shape of the capture distribution curve in 

an iron layer is sensitive to the values of the end points, 

and statistical variations in the determination of some of 

these points had led, in some instances, to results that were 

not compatible with known qualitative features that should 

have been evident in the curves. The following considerations 

were used to improve the estimates of these end points, and, 

as will be pointed out later, the results, using the "cor­

rected" end points, were qualitatively much superior to the 

first capture curves. 

It became clear early in this work that most of the cap­

ture weight in these problems was being deposited by neutrons 

that had reached thermal equilibrium with the media through 
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Figure 22. Geometry I—sample plots (and smoothed curves) of p(u) = 
capture probability per unit distance per incident neutron, 
for source of lethargy u, (at constant x = position in each 
layer) vs source lethargy 

Top row (left to right): First water layer, second water 
layer, third water layer 

Bottom row (left to right): First iron layer, second iron 
layer, third iron layer 
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Figure 23. Geometry II—Sample plots (and smoothed curves) of p(u) = 
capture probability per unit distance per incident neutron, 
for source of lethargy u, (at constant x = position in each 
layer) vs source lethargy 

Top row (left to right): First water layer, second water 
layer, third water layer 

Bottom row (left to right): First iron layer, second iron 
layer, third iron layer 
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which they were passing. One might expect that the energy 

spectrum of these thermalized neutrons at iron-water inter­

faces in the array would he approximately independent of which 

interface was being considered. If this constancy holds, an 

effective capture cross section can be defined such that the 

capture rate at any interface is given by the product of this 

cross section and the flux of thermal neutrons at the inter­

face. This effective capture cross section and the ratio of 

the capture rate in iron to the capture rate in water at an 

interface will be constant to the extent that the energy 

spectrum of the neutrons being captured is constant. 

If this spectrum is Maxwellian and if the capture cross 

sections of iron and water vary inversely as the square root 

of the neutron energy, then the ratio, r, of the iron capture 

rate to the water capture rate at an interface will be given 

by (24) 

r ~ & (2aT)Fe/0 (2̂ ) H2q = aT Fe =9.74 

(%â ) H20 

where 2aT is the macroscopic thermal neutron capture cross 

section (15), and 0 is the thermal neutron flux at the inter­

face. 

Tables 6 and 7 show the ratio of iron capture rate to 

water capture rate at the five iron-water interfaces for 

geometries I and II. These ratios were calculated from the 
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Table 6. Ratio of capture rate in . iron to capture rate in 
water at the iron -water interfaces of geometry I 

Interface E (Mev) 
(Figure 1) 4.5 1.0 0.1 0.04 0.02 0.01 

ti 4.9 19.6 8.3 13.1 9.0 12.6 
t2 12.7 10.6 7.6 10.0 9.3 9.3 

9.7 9.9 8.9 8.2 7.1 6.2 
t4 10.7 9.0 8.1 9.0 10.2 7.0 
t5 5.8 9.0 7.5 7.5 7.4 9.5 

Table 7. Ratio of capture rate in iron to capture rate in 
water at the iron -water interfaces of geometry II 

Interface E (Mev) 
(Figure 1) 4.5 1.0 0.1 0.04 0.025 0.01 

8.1 5.9 9.2 7.6 8.4 6.8 
%2 10.0 6.5 9.8 4.6 6.4 7.6 
t] 10.2 8.5 7.8 8.4 6.8 6.4 
t4 7.1 10.3 9.9 11.3 17.3 7.0 
fc5 7.4 12.5 10.1 7.0 6.5 8.4 

original curve fits (as a function of x). A stability in this 

ratio is evident. Fifty-seven percent of the ratios lie with­

in + 20% of 9.74, and an additional 37% of the ratios lie 

within + 40% of 9.74. 

It would be expected that the water capture data would 

have better statistical accuracy than the iron capture data 

because of the larger number of collisions that occur in water 

than in iron. This is borne out in Tables 4 and 5. In addi­

tion, the spatial variation of the capture curves is much 

smaller in water layers than in iron layers. Consequently, 
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the end points of capture curves in water layers are much less 

sensitive to statistical fluctuations in the data than are the 

end points of capture curves in iron layers. Thus, the end-

points of the capture curves in the water layers are more 

accurately determined than the end-points of the capture 

curves in the iron layers. 

The considerations of the last few paragraphs were used 

to "correct" the end points of the iron capture probability 

curves. The water capture probability points, p(x), that were 

obtained from the data that had been smoothed as a function of 

source lethargy (Figures 22 and 23) were re-fitted by p(x) = 

A + Bx + Cx2. The end points from these curves were then 

assumed to be 1/9.74 times the corresponding iron capture 

probabilities at the interfaces, i,.e_., the iron capture prob­

ability at each interface was set to 9.74 times the water 

capture probability at that interface, as obtained from the 

final water curve fits. Intermediate points in each iron 

layer were obtained from the lethargy curves (Figures 22 and 

23). In general, there was relatively little difference be­

tween the corrected iron end-points and the end-points that 

were obtained from the lethargy curves. 

In a few instances (approximately 15% of all iron end-

points) , the corrected end-points appeared to be somewhat un­

reasonable in comparison with the other points in the layers. 

For these cases, the values of the end points were adjusted 
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rather arbitrarily so as to meet the following requirements 

(iron layers) : 

1. The end-points must be reasonable in comparison 

with other points in the layer. 

2. The right end-point should not have a larger value 

than the left end-point for a given layer (excluding, 

of course, the first iron layer). 

3. The iron capture rate at x = t̂  should not be 

greater than the iron capture rate at x = tg. 

4. A minimum should exist in the capture curves in the 

iron layers. 

These qualitative features are discussed in a later section. 

The adjustments just described resulted in changes of less 

than 20% for 95% of the anomalous end-points. The maximum ad­

justment was 50%. 

After these end-point adjustments, the capture probabili­

ty points in the iron layers were re-fitted as a function of 

x. The resulting capture curve parameters were fitted by a 

fourth degree polynomial, as a function of source lethargy. 

The resulting smoothed parameters were used to calculate a 

final set of capture probability curves as a function of 

distance into each layer. 

Figures 24 to 27 show the capture probability curves for 

these problems. The circles in these figures are the original 

data points, p(x), the solid curves are the first probability 
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Figure 24. Geometry I, water layers—Capture probability per unit distance 
per incident neutron vs x = distance into the layer 

Roman numerals (<3.c£., II-0.04) = layer number (left to right), 
attached arable numerals = source energy (Mev) 

I = First water layer 

II = Second water layer 

III = Third water layer 
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Figure 25. Geometry I, iron layers—Capture probability per unit distance 
per incident neutron vs x = distance into the layer 

Roman numerals (e.g., II-0.04) = layer number (left to right), 
attached Arabic numerals = source energy (Mev) 

I = First iron layer 

II = Second iron layer 

III = Third iron layer 
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Figure 26. Geometry II, water layers—Capture probability per unit distance 
per incident neutron vs x = distance into the layer 

Roman numerals (e_.c[., II-0.04) = layer number (left to right), 
attached Arabic numerals = source energy (Mev) 

I = First water layer 

II = Second water layer 

III = Third water layer 
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Figure 27. Geometry II, iron layers—Capture probability per unit distance 
per incident neutron vs x = distance into the layer 

Roman numerals (e_.c[., II-0.04) = layer number (left to right), 
attached Arabic numerals = source energy (Mev) 

I = First iron layer 

II = Second iron layer 

III = Third iron layer 
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curves fitted to the p(x), and the dashed curves are the final 

curves obtained after the processing described in this section. 

The dashed curves were obtained from the final parameter cor­

relations as a function of source lethargy. In Figures 24 to 

27, the Roman numerals (ex, II-0.04) indicate the layer num­

ber (from left to right), and the Arabic numerals give the 

source energy in Mev. 

Figures 28 to 39 give the final parameter correlations as 

a function of source lethargy. These figures can be used to 

find the parameters for the capture probability curves in 

geometries I and II for any source energy between 0.01 Mev 

and 4.5 Mev, where the capture probability curves are given by 

Water layers: p(x) = A + Bx + Cx% 

First iron layer: p(x) = aê x 

Other iron layers: p(x) = a cosh P(x-xQ) 

Here x is in inches, x = 0 at the left face of the layer, and 

p(x) is the capture probability per unit distance per incident 

neutron. 

The equations for the curves in Figures 28 to 39 are as 

follows: 

Geometry I 

First water layer 

A = 0.020148-0.029866U+0.015275U2-0.0026889U3+0.00015932U4 

B = -0.11985+0.24169U-0.10610U2+0.019502U3-0.0012072U4 

C = 0.15250-0.32869U+0.13713U2-0.024243U3+0.0014336U4 
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Figure 28. First water layer of geometry I—parameters for 
p(x) = capture probability per unit distance per 
incident neutron = A+Bx+Cx2 vs U = source lethargy 
= ln(10/Eo), EQ = source energy (Mev), x in inches 
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Figure 29. Second water layer of geometry I—parameters for 
p(x) = capture probability per unit distance per 
incident neutron = A+Bx+Cx vs U = source lethargy 
= ln(10/Eo), E0 = source energy (Mev), x in inches 
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Figure 30. Third water layer of geometry I—parameters for 
p(x) = capture probability per unit distance per 
incident neutron = Jti-Bx+Cx2 vs U = source lethargy 
= ln(10/Eg) E0 = source energy (Mev), x in inches 
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Figure 31. First iron layer of geometry I—parameters for 
p(x) = capture probability per unit distance per 
incident neutron = aê x vs U = source lethargy 
= ln(10/Eo), E0 = source energy (Mev), x in inches 
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Figure 32. Second iron layer of geometry I—parameters for 
p(x) = capture probability per unit distance per 
incident neutron - a cosh £(x-xQ) vs O = source 
lethargy = ln(10/Eo), E0 = source energy (Mev), 
x in inches 
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Figure 33. Third iron layer of geometry I—parameters for 
p(x) = capture probability per unit distance per 
incident neutron = a cosh P(x-xQ) vs D = source 
lethargy = ln(10/Eo), Ed = source energy (Mev), 
x in inches 
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Figure 34, First water layer of geometry II—parameters for 
p(x) = capture probability.per unit distance per 
incident neutron = A-fBx+Cx vs U = source lethargy 
= ln(10/Eo), EQ = source energy (Mev), x in inches 
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Figure 35. Second water layer of geometry II—parameters for 
p(x} = capture probability per unit distance per 
incident neutron = A+Bx+Cx2 vs U = source lethargy 
= ln(10/Eo), E0 = source energy (Mev), x in inches 
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Figure 36. Third water layer of geometry II—parameters for 
p(x) = capture probability per unit distance per 
incident neutron = A+Bx-fCx vs O = source lethargy 
= In(10/Eo), E0 = source energy (Mev), x in inches 
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Figure 37. First iron layer of geometry II—parameters for 
p(x) = capture probability per unit distance per 

incident neutron = aê x vs U = source lethargy 
= ln(10/Eo), E0 = source energy (Mev), x in inches 
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Figure 38. Second iron layer of geometry II—parameters for 
p(x) = capture probability per unit distance per 
incident neutron = a cosh (3 (x-x0) vs U = source 
lethargy = ln(10/Eo), E0 = source energy (Mev), 
x in inches 
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Figure 39. Third iron layer of geometry II—parameters for 
p(x) = capture probability per unit distance per 
incident neutron = a cosh P(x-x0) vs II = source 
lethargy = ln(10/Eo), EQ = source energy (Mev), 
x in inches 
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Second water layer 

A = -0.010530+0.028008U-0.012967U2+0.0024755U3-0.00015046U4 

B = -0.022785+0.12646U-0.075225U2+0.018165U3-0.0014234U4 

C = 0.10058-0.37228U+0.21745U2-0.048703U3+0.0035433U4 

Third water layer 

A =-0.027629+0.063275U-0.034098u2+0.0070187U3-0.00047649U4 

B = 0.099616-0.18496U+0.10976U2-0.023316U3+0.0015946U4 

C = -0.071129+0.086423U-0.063919U2+0.014879U3-0.0010617U4 

First iron layer 

a = -0.0025743+0.015906U-0.0029019U2+0.00056628U3 
-0.000046922U4 

P = 2.2402-0.73110U+0.56472U2-0.13255U3+0.0099479U4 

Second iron layer 

a = 0.061470-0.050526U+0.04088lU2-0.0076542U3+0.00047975U4 

0 = -4.7957+11.9908U-6.0812U2+1.1835U3-0.077532U4 

xQ = 0.57717-0.66842U+0.35627U2-0.067594U3+0.0042400U4 

Third iron layer 

a = -0.11301+0.27244U-0.13417U2+0.026715U3-0.0017897U4 

0 = -0.15850+3.1550U-1.2289U2+0.23327U3-0.015944U4 

xQ = 0.89617-0.87482U+0.43124U2-0.081658U3+0.0052045U4 

Geometry II 

First water layer 

A = -0.073950+0.15298U-0.070769U2+0.012948U3-0.00081000U4 

B = -0.14034+0.36548U-0.19639U2+0.041289U3-0.0028313U4 

C = 0.12391-0.32083U+0.16613U2-0.034283U3+0.0023245U4 
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Second water layer 

A = -0.015493+0.049535U-0.020809U2+0.0036375U3-0.00022621U4 

B = 0.042467+0.018143U+0.0030349U2-0.0018953U3+0.00014207U4 

C = 0.0023756-0.093051U+0.035072U2-0.0056974U3+0.00036269U4 

Third water layer 

A = 0.015227-0.0032838U+0.00030567U2+0.000000718U3 

-0.000001273U4 

B = -0.12973+0.22296U-0.093266U2+0.014693U3-0.00079435U4 

C = 0.12694-0.23359U+0.099055U2-0.015767U3+0.00086027U4 

First iron layer 

a = -0.057682+0.13126U-0.06731lU2+0.013020U3-0.00083Ô16U4 

0 = 2.7346-1.7004U+1.0808U2-0.21613U3+0.013336U4 

Second iron layer 

a = -0.039410+0.18706U-0.089785U2+0.017982U3-0.0012311U4 

0 = 1.4519+2.1269U-0.80463U2+0.11361U3-0.0054095U4 

x0 = 0.45018+0.08613lU-0.038467U2+0.0080942U3-0.00054379U4 

Third iron layer 

a = 0.0067343+0.10045U-0.045487U2+0.007395lU3-0.00041559U4 

0 = 4.8196-4.5840U+2.5730U2-0.51818U3+0.034378U4 

x0 = 0.19273+0.62853U-0.28439U2+0.052977U3-0.0034318U4 
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TRANSMISSION AND REFLECTION DATA 

Transmission and reflection data were obtained as a by­

product of the principle runs. The paucity of events con­

tributing to many of the transmission and reflection data 

means that much of this information is of questionable 

quantitative value. Furthermore, the primary interest in this 

study was the determination of the capture distributions. 

Therefore, the transmission and reflection data were not 

processed extensively. These data are presented in this sec­

tion along with qualitative comments on certain features and 

trends that are evident in the data. 

Figures 40 and 41 show the variation of the reflection 

and transmission fractions as a function of source lethargy. 

The variation of the reflection fraction with source energy is 

due primarily to variation in the iron total cross section. 

Reflection increases slowly with energy as the iron cross 

section increases. The increasing iron cross section leads to 

an increasing fraction of collisions in the first iron layer 

and, hence, to increasing reflection. The effect of the large 

anti-resonance in the iron total cross section at 25 kev 

(U = 6) is clearly visible in Figure 40. At source energies 

near 25 kev, the first iron layer is relatively "transparent" 

to the incident neutrons. For such sources a much larger 

fraction of the incident neutrons reach the water layers and 

are thermalized. The probability of being reflected is small 
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Figure 40, Reflection fractions in the principle runs 
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Figure 41, Transmission fractions in the principle runs 
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for thermal neutrons so that 25 kev sources lead to reduced 

reflection fractions (and, as discussed in the next section, 

to increased capture rates). A smaller, opposite effect (in­

creased reflection) is evident at about 0.04 Mev (U = 5.5). 

This is the result of a positive resonance in the iron total 

cross section near this energy. 

The variation of the transmission fraction in Figure 41 

is due to the increasing probability of a neutron's being 

thermalized in the array as the source energy decreases. The 

short mean free path of low energy neutrons means that they 

have much less chance of being transmitted than do higher 

energy neutrons. The difference between the two curves in 

Figure 41 is due primarily to the difference in the thicknes­

ses of the water layers in the two geometries. 

Tables 8 to 11 give the energy spectra of the trans­

mitted and reflected neutrons. In general, the reflection 

spectra exhibit a large peak representing the majority of the 

reflected neutrons at, or just below, the source energy, 

another much smaller peak at thermal energies, and a small 

broad minimum between the two peaks. An exception to this 

occurs for sources of energy near the 25 kev iron anti-reso­

nance. For such sources a large fraction of the reflected 

neutrons have suffered collisions in the first water layer. 

The large energy reductions accompanying these water colli­

sions cause the reflected neutron energies to be spread more 
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Table 8. Energy spectrum of reflected neutrons—geometry I 

Fraction of reflected neutrons in AE 
Source energy EQ(Mev) 

AE (Mev) 4.5 1.0 

i—1 o
 0 .04 0.02 0.01 

0-10 ""G 0.029 0.071 0.107 0 .087 0.157 0.127 

10"6-10-5 0.015 0.035 0.060 0 .050 0.077 0.052 

10-5-10"4 0.011 0.054 0.060 0 .060 0.103 0.089 

10-4-10-3 0.020 0.046 0.072 0 .101 0.131 0.069 

10-3-10 ""2 0.021 0.087 0.100 0 .086 0.127 0.664 

10-2-10-1 0.049 0.134 0.602 0 .617 0.406 — 

io-1-i 0.248 0.573 — —  — —  — —  — —  

1-10 0.606 —  —  — — —  —  

Table 9. Energy spectrum of reflected neutrons—geometry II 

Fraction of reflected neutrons in AE 
Source energy (Mev) 

AE (Mev) 4.5 1.0 0.1 0 .04 0 .025 0.01 

0-10 ""G 0.036 0.065 0.064 0 .067 0 .212 0.065 
10-6-10-5 0.017 0.028 0.032. 0 .048 0 .076 0.027 
10-5-10-4 0.010 0.046 0.050 0 .030 0 .084 0.023 
10-4-10-3 0.011 0.058 0.070 0 .031 0 .130 0.034 
10-3-10-2 Ô .046 0.047 0.080 0 .073 0 .193 0.851 
10-2-10-1 0.035 0.083 0.701 0 .750 0 .306 — —  

io-1-i 0.208 0.676 — —  —  —  — —  —  —  

1-10 0.638 — —  —  —  mmmm «••• •••• 
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Table 10. Energy spectrum of transmitted neutrons—geometry I 

Fraction of transmitted neutrons in AE 
Source energy (Mev) 

AE(Mev) 4.5 1.0 0.1 0.04 0.02 0.01 

Too few for significance 0-10 -6 0 .031 0 .085 0 .262 

10-6-10 -5 0 .012 0 .034 0 .106 

10-5-10 -4 0 .013 0 .039 0 .126 

10-4-10 -3 0 .018 0 .056 0 .159 

10-3-10 -2 0 .024 0 .098 0 .178 

10-2-10 -1 0 .038 0 .115 0 .168 

10-1-1 0 .139 0 .572 — —  

1-10 0 .726 — — — —» 

Table 11. Energy spectrum of transmitted neutrons—geometry 
II 

Fraction of transmitted neutrons in AE 
Source energy (Mev) 

AE(Mev) 4.5 1.0 0.1 0.04 0.025 0.01 

Too few for significance 0-10 —6 0 .099 

10-6-10 -5 0 .016 
10-5-10 -4 0 .040 

10-4-10 -3 0 .028 

10-3-10 -2 0 .040 

0
 

i—i 
1 

C
M

 1 O
 

i—1 -1 0 .049 

io-1-i 0 .174 

1-10 0 .552 
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evenly over the energy range between the source energy and 

thermal energies. The data for the transmitted neutron energy 

spectra were not statistically significant for most of the 

problems. The available data indicate, as would be expected, 

that the transmission energy spectra also exhibit a large peak 

near the source energy and a smaller peak at thermal energies. 

Tables 12 to 15 give the angular spectra of the reflected 

and transmitted neutrons in the main runs. An interesting 

feature of the reflection spectra is that they show a striking 

constancy as a function of source energy. Because of the 

apparent insensitivity of the reflection angular spectra to 

changes in the source energy, an average reflection angular 

spectrum was calculated by averaging, over the six source 

energies in each geometry, the fraction of reflected neutrons 

in each cosine interval. The resulting reflection angular 

spectrum is compared in the tables with the cosine angular 

distribution. The reflection angular spectrum in these runs 

approximates a cosine distribution very closely. 

The transmission angular spectra shown in the tables, are 

again, very poor statistically. The transmission angular 

spectra appear to be somewhat more peaked in the forward di­

rection than the reflection angular spectra. This is proba­

bly due to the higher probability of transmission for those 

source neutrons that are approximately normally incident and 

to a significant forward peaking in the iron differential 

scattering cross section at higher energies. 
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Table 12, Angular spectrum of reflected neutrons—geometry I 

Fraction of reflected neutrons with cos ©i_i in A cos © 

Source energy (Mev) 

______ 
for all Cosine 

-A cos (©) 4.5 1.0 0.1 0.04 0.02 0.01 sources distribution 

0-0.1  0.017 0.013 0.014 0.009 0.016 0.014 0.014 0.010 

CN O
 

1 
H

 

O
 0.060 0.047 0.046 0.042 0.035 0.065 0.049 0.030 

0.2-0.3 0.079 0.063 0.060 0.054 0.050 0.061 0.061 0.050 

0.3-0.4 0.097 0.096 0.089 0.079 0.085 0.071 0.086 0.070 

0.4-0.5 0.113 0.091 0.112 0.105 0.074 0.067 0.094 0.090 

0.5-0.6 0.110 0.103 0.133 0.120 0.090 0.114 0.112 0.110 

0.6-0.7 0.115 0.132 0.106 0.121 0.157 0.126 0.126 0.130 

0.7-0.8 0.137 0.131 0.124 0.143 0.128 0.130 0.132 0.150 

0 .8-0 .9 0.134 0.139 0.148 0.165 0.193 0.151 0.155 0.170 

0.9-1.0 0.137 0.184 0.170 0.162 0.171 0.201 0.171 0.190 
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Table 13. Angular spectrum of reflected neutrons—geometry II 

Fraction of reflected neutrons with cos ©i_i in A cos © 

Source energy (Mev) 

Average 
for all Cosine 

-A cos (©) 4.5 1.0 0.1 0.04 0.025 0.01 sources distribution 

0-0.1 0.007 0.012 0.019 0.010 0.015 0.012 0.013 0.010 

0.1-0.2 0.028 0.071 0.030 0.031 0.054 0.038 0.042 0.030 

0.2-0,3 0.051 0.030 0.046 0.065 0.050 0.045 0.048 0.050 

0.3-0.4 0.071 0.096 0.099 0.064 0.076 0.075 0.080 0.070 

0.4-0.5 0.084 0.103 0.137 0.088 0.064 0 .090 0.094 0.090 

0.5-0.6 0.112 0.088 0 .100 0.077 0.144 0.127 0.108 0.110 

0.6-0.7 0.136 0.094 0.092 0.116 0.075 0.127 0.107 0.130 

0.7-0.8 0.137 0.155 0.141 0.169 0.141 0.146 0.148 0.150 

0.8-0.9 0.164 0.178 0.162 0.184 0.185 0,154 0.171 0.170 

0.9-1.0 0.212 0.177 0.172 0.195 0.197 0.187 0.190 0.190 
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Table 14. Angular spectrum of transmitted neutrons—geometry I 

A cos © 

Fraction of transmitted neutrons with cos ©£_i in A cos © 

Source energy (Mev) 

4.5 1.0 0.1 0.04 0.02 0.01 

Average 
for all 
sources 

Cosine 
distribution 

0 - 0.1 0.006 0.003 0.004 Too few for 0.004 0.010 

0.1-0.2 0 .015 0.015 0.019 significance 0.016 0.030 

0.2-0.3 0.022 0.018 0.010 0.017 0.050 

0.3-0.4 0.052 0.036 0.077 0.055 0.070 

0.4-0.5 0.075 0.069 0.085 0.076 0.090 

0.5-0.6 0.086 0.099 0.100 0.095 0.110 

0.6-0.7 0.135 0.143 0.163 0.147 0.130 

0.7-0.8 0.166 0.161 0.141 0.156 0.150 

0.8-0.9 0.194 0.209 0.224 0.209 0.170 

0.9-1.0 0. 248 0.245 0.174 0.222 0.190 
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Table 15. Angular spectrum of transmitted neutrons—geometry II 

Fraction of transmitted neutrons with cos in A cos © 

Source energy (Mev) 
Average 
for all Cosine 

A cos © 4.5 1.0 0.1 0.04 0.025 0.01 sources distribution 

0-0.1  0.004 Too few for significance 0.010 

0
 

H
 

1 o
 

to
 

0.028 0.030 

0
 

to
 

1 o
 

w
 

0.014 0.050 

0.3-0.4 0.053 0.070 

0.4-0.5 0.065 0.090 

0.5-0.6 0.122 0.110 

0.6-0.7 0.114 0.130 

0.7-0.8 0.136 0.150 

0*8-0.9 0.206 0.170 

0.9-1.0 0.259 0.190 
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DISCUSSION 

Physical Features of the Capture Distributions 

The attenuation of neutrons in an array of iron and water 

slabs is characterized by the following physical properties: 

1. At neutron energies above the thermal range, the 

energy changes accompanying neutron-iron and neutron-oxygen 

elastic collisions are relatively small (maximum of 5% for 

iron and 25% for oxygen). 

2. At all neutron energies, the average energy change in 

neutron-proton collisions is large. 

3. Iron inelastic scattering comprises about 40% of all 

iron collisions at 5 Mev and decreases with decreasing energy 

to a negligible rate at 0.85 Mev. 

4. The neutron capture rate in iron is small at higher 

neutron energies and increases with decreasing neutron energy 

to a rate equal to 30 to 90% of all iron collisions at thermal 

neutron energies. 

5. The capture cross section for water is much smaller 

than that of iron at all neutron energies. 

6. The iron scattering cross section (excluding reso­

nances) increases by a factor of about three between 5 Mev and 

thermal energies. 

7. The scattering cross section of water increases from 

a value approximately equal to that of iron at 5 Mev to ap­

proximately six times that of iron at thermal energies. 
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As a result of these properties, the attenuation and 

capture of high energy neutrons in an array of iron and water 

slabs proceeds via three steps: 

1. The energy of high energy neutrons (greater than 1 

Mev) is reduced to about 1 Mev by inelastic scattering in iron 

and by neutron-proton collisions in water. Below this region 

(1 Mev), the cross section of water becomes larger than that 

of iron so that neutron-proton collisions begin to predomi­

nate. 

2. The neutrons are then thermalized by elastic col­

lisions with protons in the water. 

3. The thermalized neutrons then diffuse to the iron 

where they are captured. 

The position and energy changes of the neutrons in steps 

1 and 2 are large, whereas the capture rate in these steps is 

small. On the other hand, most of the capture occurs in step 

3, in which the energy remains relatively constant and the 

position changes are much smaller than in the first two steps. 

On the basis of these known physical characteristics of 

the attenuation process, one would expect certain qualitative 

features to be present in the capture distribution curves for 

the various layers in the array. (Some of these features were 

outlined in the previous section, but will be repeated for 

completeness). These features are as follows: 

1. First iron layer. The capture curve in this layer 
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should be low at the left face of the layer because of the 

large leakage rate of neutrons through this face (reflection). 

The curve then should increase rapidly with distance into the 

slab, reaching a maximum at the right face. This increase is 

the result of the capture of neutrons that are thermalized in 

the first water layer and diffuse back into the first iron 

layer. 

2. First water layer. The capture curve should be lower 

at the left face of this layer than at the right face because 

of greater thermal neutron leakage through the left face (via 

the first iron layer) than through the right face (via the 

last four layers of the array). Between these two faces the 

capture curve should exhibit a maximum. This maximum is the 

result of the larger thermal neutron capture cross section in 

iron as compared to that of water. The iron layers on either 

side of the water layer act as thermal neutron "sinks" which 

deplete the thermal neutron population in the water near these 

iron surfaces. The water capture rates should be smaller than 

the capture rates in adjacent iron layers. 

3. Second iron layer. The water layers adjacent to this 

iron layer act as "sources" of thermal neutrons. These 

thermalized neutrons diffuse into the iron and are rapidly ab­

sorbed. Consequently, peaks should occur in the iron capture 

curve at each surface of the layer. The probability that a 

thermal neutron will diffuse out of the assembly is approxi­



www.manaraa.com

148 

mately the same at both faces of the second iron layer, and, 

thus, the thermal neutron flux and the capture rate would be 

expected to be approximately the same at both faces of this 

layer. If a difference exists, the capture rate at the left 

face should be larger than that at the right face, because of 

a general decrease in the neutron population from left to 

right through the array as the source neutrons are captured. 

This attenuation of the neutron flux by the slabs and, con­

sequently, the difference just described, should increase with 

increasing dimensions of the array and with decreasing source 

energy. Finally, the height of the capture curve at the left 

face of the second iron layer should be greater than that at 

the right face of the first iron layer. Approximately the 

same number of thermal neutrons should diffuse to each of 

these two surfaces from the first water layer, but the larger 

leakage (reflection) from the first iron layer should decrease 

the thermal neutron population in that layer as compared to 

the population in the second iron layer. 

4. Second water layer. The capture curve in this layer 

should be similar to that in the first water layer with the 

exception that the capture rate at the right surface of the 

second water layer may be somewhat less than that at the left 

face of this layer. Attenuation in the first three layers of 

the array should cause the capture rate in the second water 

layer to be somewhat lower than that in the first water layer. 
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Both of these effects should be larger for larger geometries 

and for smaller source energies. 

5. Third iron layer. The shape of the capture curve in 

this layer should be similar to that in the second iron layer. 

The capture rate at the left face of the third iron layer 

should be smaller than that at the right face of the second 

iron layer. This is due to attenuation of the thermal neu­

tron flux by the first four layers. In addition, the capture 

rate at the right face of the third iron layer should be 

smaller than that at the left face because of attenuation and 

also because of leakage of the thermal neutrons through the 

third water layer (transmission). These features should be 

more pronounced for larger geometries and for smaller source 

energies. A minimum still should exist in the curve in the 

third iron layer because of the capture of thermal neutrons 

that diffuse back into the iron from the second and third 

water layers. The peak at the right face of the third iron 

layer should decrease more rapidly with increasing slab di­

mensions and decreasing source energy than the peak at the 

left face. Again, this is an attenuation effect. 

6. Third water layer. A shallow maximum near the third 

iron layer would be expected in the capture curve in the third 

water layer. This maximum is caused by depletion of the 

thermal neutron population at the left face of the third 

water layer by diffusion into the adjacent iron "sink", and 
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depletion of the population at the right face of the third 

water layer by leakage (transmission) through the right face. 

This leakage should normally cause a larger decrease in the 

curve near the right face of the third water layer than dif­

fusion into the iron causes at the left face. The maximum in 

the third water layer should become less pronounced with in­

creasing slab size and decreasing source energy as the effect 

of attenuation through the third water layer becomes larger 

than the effect of the iron "sink". 

These qualitative features were evident in the majority 

of the capture curves as fitted to the original data. (These 

curves are the solid curves in Figures 24 to 27). In several 

instances, however, the capture curves were not compatible 

with the qualitative expectations. For example, the capture 

rate in the third iron layer of geometry I exhibits a minimum, 

as expected, for source energies of 1.0, 0.04, and 0.02 Mev, 

but no minimum for source energies of 4.5, 0.1, and 0.01 Mev. 

There is no physical explanation for this behavior. The 

logical conclusion is that statistical fluctuations obscured 

the peak at the right surface of the third iron layer for 

certain problems. Examination of the solid curves in Figures 

24 to 27 will show that exceptions to most of the expected 

qualitative features are present. 

As discussed in previous sections, the original capture 

curves were adjusted in three ways: The data were smoothed 
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as a function of source lethargy, the capture rate in the iron 

at each iron-water interface was set to 9.74 times the capture 

rate in the water at the interface, and the parameters of the 

capture curves fitted to these adjusted points were smoothed 

as a function of source lethargy. (This last adjustment was 

relatively small compared to the first two). Capture curves 

calculated from these final smoothed parameters are shown as 

the dashed curves in Figures 24 to 27. 

These final capture curves are, qualitatively, much 

superior to the original capture curves. The final curves 

exhibit the expected qualitative features with few exceptions. 

Those exceptions that do occur are not large and are of a 

relatively unimportant type. (For example, the capture rate 

at the left face of the third iron layer in geometry I is 

somewhat larger for some source energies than the capture rate 

at the right face of the second iron layer). It is interest­

ing to note that the larger differences between the original 

curves and the adjusted curves occur in those instances in 

which the qualitative inconsistencies were most pronounced in 

the original curves. 

These last statements must be qualified to some extent 

for sources of energies near the 25 kev resonance in the iron 

total cross section. For such sources, a resonance effect 

is present that is smoothed out in the data processing. This 

is discussed in the following paragraphs. 
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Resonance Effects 

The variations of the capture probabilities as a function 

of source lethargy at constant x, as shown in Figures 22 and 

23, exhibit rather large fluctuations for source energies of 

0.04 Mev (U = 5.5) and 0.02 or 0.025 Mev (U = 6.0). This is 

particularly evident near slab surfaces. The 0.04 Mev points 

appear to be unusually low, and the 0.02 and 0.025 Mev points 

appear to be unusually high. This behavior is the result of 

resonances that exist in the iron total cross section. A 

positive resonance exists at about 0.03 Mev and a very large 

anti-resonance (minimum) exists in the cross section curve at 

0.025 Mev. These resonances lead to either increased (for a 

positive resonance) or decreased (for an anti-resonance) 

reflection rates from the first iron slab and corresponding 

decreases or increases in the number of source neutrons that 

reach the water layers and that are subsequently thermalized 

and captured in the array. (This effect was described in the 

previous section). 

In order to resolve adequately the effects of these cross 

section resonances upon the behavior of the capture rates as a 

function of source energy, it would be necessary to run a 

number of additional problems with source energies in the 

range 0.05 to 0.01 Mev. Such an examination was not within 

the scope of the present study. In lieu of this examination, 

it was decided to smooth the data as a function of source 
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lethargy, as described earlier, with, as a result, under-

estimations of the capture rates for 0.025 Mev sources and 

overestimations of the capture rates for 0.04 Mev sources. 

In most practical problems, the fraction of source neu­

trons that will have energies near these resonances will be 

small, and the errors resulting from this lack of resolu­

tion of the resonance effects will not be serious. The ex­

istence of this deficiency certainly should be kept in mind, 

however, in using the results of this work. 

Sample Problem 

The following example will illustrate one manner in which 

the data and correlations presented in this paper might be 

employed. 

Consider the problem of determining the capture distri­

bution in a reactor thermal shield assembly that approximates 

geometry II from neutrons leaking out of a reactor core and 

impinging upon the thermal shield array. Normally, the angu­

lar spectrum of these neutrons will approximate a cosine or 

isotropic distribution, and the results presented in this 

paper should apply very well. Assume that the neutrons im­

pinging upon the array have k different energies, or, that the 

energy spectrum of the neutrons can be broken up into k dif­

ferent effective energy groups. Assume further that the 

source strength, i,._e., the neutron current into the array of 
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neutrons in energy group, i, is given by (neutrons/in^sec). 

The probability of a neutron-neutron collision is ex­

tremely small so that neutrons in one energy group do not 

affect the results from neutrons in other energy groups. 

Therefore, the k energy groups can be treated as k different 

problems and the final results can be obtained simply by sum­

ming the contributions from the k groups. 

For illustration, assume that one of the source energy 

groups has an effective energy of 2 Mev and a source strength 

of 10^ neutrons/in^sec. (The treatment of the other groups 

will proceed in an identical fashion.) From Figures 34 to 

39 (or from the equations for the curves in these figures) 

we obtain the parameters for the capture distribution curves 

for a 2 Mev (U =1.609) source: 

First iron layer : a = 0.0279, (3 = 1.987 

First water layer: A = 0.0373, B = 0.0920, C = 

-0.0892 

Second iron layer: a = 0.0956, £ = 3.222, xQ = 

0.519 

Second water layer: A = 0.0239, B = 0.0755, C = 

-0.0778 

Third iron layer: a = 0.0787, P = 2.178, x0 = 0.665 

Third water layer: A = 0.0105, B ? 0.0425, C = 

-0.0520 

The corresponding capture probability curves are given by: 
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First iron layer: p(x) = 0.0279 el.987% 

First water layer: p(x) = 0.0373+0.0920x - 0.0892x2 

Second iron layer; p(x) = 0.0956 cosh 3.222(x-0.519) 

Second water layer: p(x) = 0.0239+0.0755x - 0.0778x2 

Third iron layer: p(x) = 0.0787 cosh 2.178(x-0.665) 

Third water layer: p(x) = 0.0105+0.0425x - 0.0520x2 

where x = 0 at the left face of each layer and x is in inches. 

Finally, the capture rates in the various layers from the 2 

Mev source group are given by 

Capture rate = 10^ p(x) captures/in^sec 

where the p(x) are given above. (Note that the origin of each 

capture curve can be translated to a common point by substitut­

ing x* - x^ for x in each equation, where x' is the new posi­

tion variable and x^ is the displacement of the left face of 

each slab in the ' coordinate system.) 

These equations give the neutron capture rates throughout 

the thermal shield array. The subsequent determination of the 

heating that results from the capture gamma-rays is a major 

problem and one that is not solved easily; however, such 

problems have received considerable attention in the field of 

nuclear reactor shielding and many theoretical and empirical 

approaches have been used with varying degrees of success. A 

discussion of the problems involved and of some of the common­

ly used mathematical techniques for such gamma-ray shielding 

problems may be found in reference (25). 
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An adequate discussion of the problem of determining the 

heating rates from distributed neutron capture gamma-ray 

sources in multiregion configurations would be quite lengthy 

and is not appropriate here. It should be pointed out, how­

ever, that the specification of the capture distributions, 

jL.e_., the distribution of capture gamma-ray sources, in terms 

of a sum of exponential functions, or as a low order poly­

nomial, is convenient for gamma-ray shielding calculations. 

Such functional forms for the gamma-ray source distributions 

often lead to closed solutions in terms of tabulated integrals 

for such shielding problems (25). This was the reason for the 

choice of the functional forms for the capture distribution 

curves that were used in this study. 
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CONCLUSIONS AND RECOMMENDATIONS 

Conclusions 

1. The problem of determining the neutron capture dis­

tribution in an array of iron and water slabs from neutrons 

impinging upon one face of the array was successfully attacked 

by means of Monte Carlo calculations with an IBM-650 digital 

computer. 

2. Correlations of the parameters for fitted capture 

distribution curves were obtained as a function of source en­

ergy for two different geometries. This was done for cosine 

sources of energies between 0.01 Mev and 4.5 Mev. 

3. The Monte Carlo results exhibited predictable quali­

tative characteristics to a very satisfactory degree. All of 

the features that would be expected in the capture curves, on 

the basis of physical considerations, were present in the 

final capture curves obtained in this study. 

4. Large resonances in the iron total cross section af­

fected the capture distributions in the array. Streaming of 

neutrons through the iron layers and into the water layers 

occurred for sources of energies near the large anti-reso­

nance in the iron total cross section at 25 kev. This caused 

an increase in the neutron thermalization rate as compared to 

that for sources of other energies. A corresponding increase 

in the capture rate in the array and decrease in the reflec­

tion rate resulted. 
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5. Reflection and transmission fractions were obtained 

as a function of source energy for the two geometries that 

were examined. The effect of the 25 kev anti-resonance in the 

iron total cross section was clearly evident in these reflec­

tion data. 

6. The angular distribution of reflected neutrons very 

closely approximated a cosine distribution, while the angular 

distribution of transmitted neutrons was somewhat more peaked 

in the forward direction. 

7. The most important variables in these problems were 

the dimensions of the layers and the energy of the source 

neutrons. 

8. The capture distributions appeared to be rather in­

sensitive to changes in the source angular spectrum. 

9. Calculated capture rates at certain points, particu­

larly at surface points in interior iron layers, were very 

sensitive to statistical fluctuations in the Monte Carlo data. 

Known physical characteristics of the attenuation and capture 

processes were used to improve the Monte Carlo ..estimates. 

All such information should be used wherever possible to im­

prove the Monte Carlo estimates. (It should be remembered 

that, since the statistical uncertainty decreases inversely 

as the square root of the number of histories, increasing the 

statistical accuracy of the data by increasing the number of 

histories is very inefficient.) 
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10. A modification of a technique due to J. R. Triplett 

et al. (14a) was used to treat collisions in the thermal en­

ergy range. This routine was checked against theoretically 

predictable and experimental answers for water with excellent 

results. 

11. The rigorous determination of the statistical un­

certainty of the final capture curves and correlations in this 

study was not practical; however, upper limit estimates were 

obtained. These upper limit estimates were small enough so 

that the data obtained are considered to be meaningful and 

useful. 

12. Variance reducing techniques and program optimiza­

tion are essential in Monte Carlo calculations with a machine 

such as the IBM-650, A large percentage of the work in the 

present study was expended in attempting to reduce the running 

times for the problems and the variances of the results. 

13. Use of an IBM-650 computer for calculations such as 

these is practical, but, perhaps, only marginally so. Im­

provement of the program and the techniques used in this study 

would increase the versatility of the IBM-650 in such calcu­

lations; however, this effort might possibly be expended more 

profitably with a larger and faster machine should such be 

available. 

14. The Monte Carlo method offers a versatile and, it is 

felt, an important tool with which to attack neutron transport 
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problems. Monte Carlo techniques and methods are becoming 

more standardized so that the novice can apply Monte Carlo 

effectively to a wide variety of problems. As experience in 

the field is accumulated and disseminated, the Monte Carlo 

method should become a calculational tool of increasing value. 

(This statement also applies to many problems other than those 

in neutron transport). 

Recommendations 

1. The machine used in this study had a 2000 word drum 

memory. This is to be replaced soon by a 4000 word drum. The 

program should be re-written for this new drum and optimized 

more efficiently. The source energy limitation also could be 

relaxed with a larger drum, and other refinements (e^., more 

detailed treatment of iron inelastic scattering), which were 

impossible with the 2000 word memory, could be added. 

2. Improvements in the Monte Carlo techniques should be 

sought continually in order to decrease the variances of the 

results obtained in a given amount of computing time. 

3. Some means of testing the high energy portion of the 

program should be found. Work that may be pertinent is under­

way at present, and more is planned for the future, at the 

Iowa State University reactor. These studies might be used 

to check the reliability of answers produced by the Monte 

Carlo program. 

4. The effect of geometry changes upon the capture dis-
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tributions should be studied in detail. Some means should be 

found, if possible, of correlating this information in a use­

ful manner. This task will probably be difficult, but the 

systemization of geometry effects must be accomplished before 

the present data will be of maximum usefulness. 

5. Better resolution of the resonance effects in the 

capture distributions as a function of source energy should be 

obtained. The range of source energies between 0.01 Mev and 

0.05 Mev should be examined in more detail. 

6. The effect of temperature should be examined. It 

would be expected that the capture rates would not be sensi­

tive to temperature changes; however, this should be verified. 

7. The effect of errors in the cross section data used 

in this study should be determined. Examination of the effect 

of changing the energy variation of the capture cross sections 

would be particularly interesting. In addition, the total 

cross section data are rather uncertain in the thermal energy 

range. The effect of errors in these data should be studied. 

Finally, effects arising from smoothing the many small 

resonances in the iron cross section data as was done in this 

work should be studied. 

8. The effect upon the capture distributions of un­

certainties in the iron inelastic scattering physical model 

and in the iron inelastic scattering cross section and gamma 

emission probability data should be examined. These uncer­
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tainties will be more important if the upper limit of the 

source energy is increased. 

9. Quantitative studies should be made of the effect up­

on the statistical uncertainties of variations in the Monte 

Carlo techniques. For example, optimum values should be 

sought for the termination probability and the value of WR 

in the Russian Roulette routine. In the present study, a 

termination probability of 0.5 and values of WR between 0.1 

and 0.3 appeared to give the most satisfactory results. How­

ever, no quantitative study of these effects was made. In 

addition, the effect upon the variances of such techniques 

as the uniform first collision weighting routine should be 

examined. (These statements also apply to new variance re­

ducing techniques that might be added to the program). 

10. Methods of determining the statistical reliability 

of the curves and correlations as presented in this work should 

be studied. The amount of improvement of the variances of the 

final answers as compared to the variances of the original 

data points should be established if possible. 
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APPENDIX A 

Distance between Collisions 

The probability that a neutron with energy E will suffer 

an interaction while traveling through a homogeneous material-' 

is known to be a constant per unit distance traveled. This 

constant depends only upon the energy of the neutron and upon 

the particular medium being traversed. The constant is the 

macroscopic total cross section and usually is designated by 

£irj\ • 

If a beam of N uncollided neutrons with energy E impinges 

normally upon a small thickness, dy, of a material, then, on 

the average, a fraction, Sp(E)dy, of these will be removed 

from the incident beam as it passes through dy. Thus, 

iF = 2T(E)dy 

The solution of this equation gives the well-known ex­

ponential attenuation law for the fraction of uncollided neu­

trons at a distance y into a layer of material from an initial 

beam of N0 neutrons impinging normally upon that layer at y = 

0. 

n ~̂ t (E) y = e 
N0 

The probability that a neutron will travel uncollided 

The following statements apply equally well to a materi­
al with uniform inhomogeneities of a size that is small com­
pared to the mean free path between collisions of the neutrons 
in the medium. 
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through a distance y in a material with total cross section, 

2t(e), and then collide in an infinitesimal thickness dy is, 

therefore, 

p (y) dy = e ̂  ̂ Y2T (E) dy 

The function, p(y), is the probability density function 

describing the position, y, for the first collision of a neu­

tron starting at y = 0 and traveling along the direction y in 
00 

a medium with total cross section ZT(E). (Note that j p(y)dy 

W . Jo 
= 1 as required for the probability density function.) 

If we measure distance along a direction x with which the 

direction y makes an angle 9, the probability distribution for 

the first collision as measured along x is simply 

2t (e) - — (e).x 

p (x) dx = e cos ® dx 
cos 6 

where x is the distance traveled in the direction x from the 

point of origin of the neutron (x = 0). 

Now, consider a neutron with energy Ê  traveling at an 

langie ©,• to the normal direction x of Figure 1 after havincr 

undergone an i collision at Xj. The distance measured along 

x to the i + 1 collision is distributed asx##l:16ws : 

(̂Ei) 
p(Ax

i+l> = cos 9l e COS (A.D 

where Axj_+1 is the distance along the direction x between col­

lisions i and i + 1. To specify the position of the i + 1st 

collision, we must pick a random Ax̂ +̂  from the distribution 
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A.1 and then set 

xi+l = xi + A%i+1 

A common method of selecting a random sample from dis­

tribution A.1 is to use the "Golden Rule" described earlier. 

The resulting equation specifies Ax̂ +1 as 

. . / ; : . cos ©i In R ' : 

5ÇTËJ 

where R is a random number selected from the interval (0, 1). 

The calculation of the necessary hundreds of thousands of 

logarithms for this study using this method would require very 

larĝ  amounts of computing time on the IBM-650. The following 

alternative method suggested by Dr. H. 0. Hartley of the Iowa 

State University Statistical Laboratory was used. 

If k random samples, ŷ , are picked from k independent 

normal distributions with means and variances the 

variate 

- ' È t i r f  
. has a chir,squared distribution With k degrees of freedom (10, 

*£l99,.' ? : 

p ( u )  - - Ï S Ï T Û T  5 ^  u  " 1  e ~ , i U  ( u  >  0 '  

Now, take k = 2 and let the original distributions be 

N(0, 1); i_.<2., normal with means 0 and variances 1. We get 
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u = (yx + y2)2 

~3"U 
p (u) = %e 2 (u )> 0) (A. 2) 

Let 

Y = hu 

dY = ̂ du 

The probability distribution function for Y is thus 

p (Y) = e"Y (Y > 0) (A. 3) 

!.e_., Y is exponentially distributed. 

To pick a random•sample, Ŷ , from an exponential distri­

bution we pick two random samples, ŷ  and y2, from N(0, 1) and 

set 

Y^ = h(Yi + y2) = 

Yj_ will then be a random sample from the distribution A. 3. 

A table of 300,000 such exponential deviates was calcu­

lated with the IBM-650, using a table of random normal devi­

ates, i,.e>, random samples from N(0, 1), prepared by the RAND 

Corporation (26). The RAND table contains 100,000 normal 

deviates (available on 10,000 standard IBM cards) from which 

50,000 exponential deviates were calculated using the RAND 

cards in serial order. The RAND normal deviate cards were 

then put in random order by sorting on four successive random 

digits that were punched into each card from a table of random 

digits also prepared by the RAND Corporation (14b). The normal 

deviates on each card were then put in random order, as they 
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entered the IBM-650, by means of control panel wiring and 

another 50,000 exponential deviates were calculated. This 

procedure was repeated until a total of 300,000 exponential 

deviates had been prepared. This table served as a source of 

random samples, û , from the distribution A.2. 

The distribution of the exponential deviates in this 

table, was checked by means of the following goodness-of-fit 

tests. These tests were made for each block of 50,000 ex­

ponential deviates. 

Chi-squared test 

Suppose that a sample of size n is drawn from a popula­

tion with distribution f(Y). Let the Y axis be divided into 

k intervals AŶ , i = 1 to k, and let n̂  be the number of ob­

servations falling in the interval AŶ . Let the probability 

; ' ::S; ,Yi 
of obtaining a sample in AYV be designated by p̂  = / f (Y')dY' 

ii 

The variate -2 log À, where A = nn TT" i >  has a chi 

squared distribution with k-1 degrees of freedom as n becomes 

large (10, p. 270). 

Thus, if the value of -2 log X is calculated that corres 

ponds to a given sample and the distribution that is to be 

tested (the exponential distribution in this instance), a 

table of cumulative chi-squared distributions can be used to 

find the probability of obtaining a value of the deviate 
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-2 log A that is larger than the one that is calculated, pro­

vided that the distribution being tested is the correct dis­

tribution for the sample. If this probability is small, then 

it is likely that the assumed distribution is incorrect. 

For example, assume that the probability, P(-2 log A1 

-2 log A), of obtaining a value of -2 log A larger than the 

one calculated, is 0.40. This means that one would expect 

that 40% of all samples of size n from the assumed distribu­

tion would have values of -2 log A larger than that obtained 

for the sample being considered. Therefore, there is little 

reason, on the basis of the sample, to believe that the as­

sumed distribution is incorrect. If, on the other hand, 

p(-2 log A' J> -2 log A) is, say, 0.05, one can conclude that 

either the sample is a very unusual one or, that the sample 

is not from the assumed distribution. The assumed distribu­

tion would be very suspect in this instance. 

The results of the :'c$SSsquared goodness-of-fit tests for 

the six sets of 50,000 exponential deviates are given in Table 

16 fork = 21.» 

Table 16. Results of the chi-squared goodness-of-fit tests 
for the calculated exponential deviates 

Deviates -2 log A P(-2 log A' y -2 log A) 

1-50,000 17.02 0.64 
50,000-100,000 17.48 0.63 
100,000-150,000 18.60 0.54 
150,000-200,000 17.88 0.60 
200,000-250,000 16.04 0.70 
250,000-300,000 20.40 0.42 
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Kolmocrorov-Smirnov test (27) 

The procedure here is to plot on the same graph the cumu­

lative distribution for the distribution to be tested and the 

observed cumulative distribution of the sample. Curves are 

then drawn at a distance da(n) above and below the assumed 

distribution, where values of da(n) are given as a function 

of significance level,.a, and sample size, n, in reference 

(27).If the sample cumulative distribution passes outside 

the band between the two da(n) curves, the hypothesis that the 

sample is from the distribution being tested is rejected. 

The value of da(n) for a sample size of 50,000 at the 5% 

level is 0.0061. (If repeated samples of size 50,000 are 

taken from a distribution, f(y), the sample cumulative dis­

tribution would be expected to lie wholly within +_0.0061 

of the cumulative distribution of f(y) for 95% of the samples). 

Table 17 shows the maximum deviation of the observed cumu­

lative distribution from the cumulative exponential distribu­

tion for the six sets of exponential deviates that were calcu­

lated. 
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Table 17. Results of th°e Kplmogorov-Smirnov goodness-of-f it test for the cal­
culated exponential deviates 

Deviates Maximum sample deviation 
da(n) s maximum deviation 
for 5% significance level 

1-50,000 0.0042 0.0061 

50,000-100,000 0.0036 0.0061 

100,000-150,000 0.0032 0.0061 

150,000-200,000 0.0043 0.0061 

200.̂ 000-250,000 0.0054 0.0061 

250,000-300,000 ' 0.0033 0.0061 
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APPENDIX B 

Energy Change in Elastic Scattering Events 

Consider an elastic collision between a neutron of mass 

m and a stationary nucleus of mass M. We make the following 

definitions: 

Ej__3. = the kinetic energy of the incoming neutron as 

measured in the laboratory system of coordinates J 

x = the distance from the neutron to the nucleus be­

fore the collision 

X — the distance from the center-.of-mas s of the two 

particles to the nucleus before the collision 

V* = the magnitude of the neutron's velocity as 

measured in the center-of-mass system of co­

ordinates 

= the magnitude of the incident neutron's velocity 

as measured in the laboratory system of coordinates 

Vj_ = the magnitude of the scattered neutron's velocity 

as measured in the laboratory system of coordi­

nates 

Vc = the magnitude of the velocity of the center-of-

mass of the two particles as measured in the 

laboratory system of coordinates 

ijf = the scattering angle as seen from the laboratory 

system of coordinates 
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f* = the scattering angle as seen from the center-of-mass 

system of coordinates. 

The laboratory system of coordinates is defined as the 

system in which the nucleus is stationary before the collision. 

The center-of-mass system of coordinates is defined by 

the requirement that the total momentum of the particles as 

measured in this coordinate system shall be zero. 

Since no external forces act upon the two particle system 

and the masses and total energy are unchanged by the collision, 

it is easily shown (2) that the velocities of the neutron ar̂ d 

the nucleus in the center-of-mass system are always oppositely 

directed and remain unchanged in magnitude by the collision. 

The conditions that prevail before and after the colli­

sion in both coordinate systems are shown in Figures 42a and 

42b (9, p. 137) . 

The vector diagram that describes the neutron velocity 

after the collision is given in Figure 43. 

If the center-of-mass coordinate system is chosen so that 

its, origin is at the center-of-mass of the two particles, we 

can write 

(m + M)X = mx 

or 

X = m* 
M + m 

Now, take the time derivative 

v _ mx 
x " FTi 
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Figure 43. Vector diagram for a neutron-nucleus collision 
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If the nucleus is stationary in the laboratory system be­

fore the collision, the speed of the nucleus as seen from the 

center-of-mass system before the collision clearly must be the 

same as the speed of the center-of-mass as seen from the 

laboratory system. We can thus write 

„ Vc = X = ™L- = m Vi-! 
M + m M + m 

Recalling that the total momentum is zero in the center-

of-mass system we have ' 

mV = MVC 

or . ; 

V* = « VC = M 

m M + m 

We now refer to Figure 43 and equate components along the 

x-axis, 

Vj_ cos f = V* cos f* + Vc 

and, along the y-axis, - ; " 
,  '  '  '  ,  '  •• '  .  "  < ,  -  '  

sin f = V* sin f* 

Squaring and adding these two equations we get 

Vi2 = V*2 + Vc2 + 2V*VC cos f* 

= Vi„i' / M 

M+m 

m Y 

M+m I (M+m) 2 

2Mm cos ifr 

Finally, recalling that the kinetic energy is given by 

H — h mV2 

we have 
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Ei _ VjL2 M2 + m2 + 2Mm cos f* 

E±_i Vi_i2 (M+m)2 

or 

E 1 + a, 2  + 2a cos ij/ 

Ei_i (1+a)2 

where a = M/m. 

This equation gives the change in kinetic energy of a 

neutron with energy ,.upo°n. being scattered through an angle 

f as measured in the center-of-mass system of coordinates. 

This expression is derived in terms of the center-of-mass 

scattering angle because, in general, the probability dis­

tribution of the scattering angle has a simpler functional 

form in the center-of-mass system than in the laboratory sys­

tem. The energies in this last equation, however, are 

measured in the laboratory system. 
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APPENDIX C 

Energy Change in Iron Elastic Scattering Events 

When the nuclear mass is relatively large, an alternate 

equation for the energy change in elastic scattering events 

may be derived which is more convenient to use than that pre­

sented in Appendix B. 

Taking the square root on both sides of the equation that 

0was presented in Appendix B:0 

1 + a2 + 2a cos if* 

(1 + a) 2 

Let A 1 + a2 

 ̂ (1 + a)2 

z = 2a cos if* 
1 + a2 

(a = — = nuclear mass/neutron mass) 

to get 

= a vm 

We expand this latter o expres sion in a Taylor's series to 
0 0 

get,'for" small z, 

vir 

with absolute error less than 
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If the masses for iron and the neutron are substituted 

in these expressions, the energy change is given by 

J®i-i 
= 0.982419 + 0.017738 cos f 

- 0.000160135 cos2f* 

* 

with absolute error less than 0.00035%. 
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APPENDIX D 

Conversion of the Center-of-Mass Scattering Angle 

to the Laboratory System 

The vector diagram describing the velocity and scatter 

ing angle of an elastically scattered neutron is given in 

Figure 43. 

As was shown in Appendix B, we can write, 

V± cos = V* cos fj* + Vc -(—— cos ih* + -52—j V<_i 
,,x 1 1 c ^M+m 1 M+m j  1  x 

, and , , 

V̂ 2 M2 + m2 + 2Mm cos 

vi-l2 (M+m)2 

Therefore, 

1 + a cos f; * 
COS fi = 1 

* 1 + a2 + 2a cos 

where a = M/m= nuclear mass/neutron mass. 
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APPENDIX E 

Angle between a Scattered Neutron's Velocity 

and the Slab Normal 

Consider a neutron with velocity V̂ -i that is scattered 

through an angle fi with resulting velocity tTf (all quantities 

are measured in the laboratory system of coordinates.) We de­

fine a coordinate system (x, y, z), as in Figure 44, such that 

x is in the direction of the normal of the array in Figure 1 

and such that V̂ _i is in the x-z plane. The velocity 

makes an angle ©i_i with the x-axis. 

In general, the velocity "vj_ will be rotated through an 

aizimuthal scattering angle gfj. about the, directio,n ©,-f 

We wish to find the angle ©j_ that the velocity Vj_ makes 

with the x-axis. 

Consider a coordinate system (x'J ,--j,y ', z ' ), that is- ob-

tained by rotating the system (x, y, z) about €he"y-axis 

through an angle ©j__i as in Figure 44 so that the x ' -axis lies 

along the direction of V̂ _̂ . The components of V̂  in the 

(x", y', z') system are: 

V = Vi COS 7lf± 

Vyl = Vj_ sin ̂  sin 0̂  

Vz« = V^ sin cos 0^ 

The transformation from the (x1, y', z1) system to the 

(x, y, z) system is: 
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v-x (direction 
of slab normal) 

Angle between a scattered neutron's velocity and 
the x-axis 
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x = x' cos ©i_i - z' sin ©i_i 

y = y* 

2 = x' sin ©. _ +z' cos ©. .. 
i-l i-l 

Therefore, 

Vx = vx' cos ©i_ -1 " vz'  sin 

i—i i •H 
CD 

vy 

il 

V2 

il sin ©i_ -1 + Vz' cos ®i-l 

Substituting for Vxi, VyIJ , and Vz 1 9 

Vx = Vj_ cos cos ©i_>1 - Vjl sin sin ©i_i cos 0± 

Vy = V± sin f± sin 0± 

Vz = Vj_ cos sin ©i_i + sin cos ©i-1 cos 0̂  

The cosine of 6j_ is given by 

V 
cos ©j_ = yT" = cos ̂  cos ©i_i° - sin ̂  sin ©i_1 cos 0± 

1 

Note that, if 0̂  is random on (0, .2 ir ), we may use equal 

ly well 

cos ©̂  = cos cos + sin sin ©̂ _i cos 0̂  
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APPENDIX F 

Probability Distribution for the Cosine of 

an Anisotropic Scattering Angle 

Differential elastic scattering cross sections for this 

study were obtained from compilations made by Nuclear Develop 

ment Corporation of America (13), (28). The angular distri­

bution data in these compilations are represented in the form 

of Legendre expansion coefficients, f̂ , defined by 

cn(E, if*) = ft2 ,(21̂ 1) f (E)P-(cos f*) 
 ̂ ... . - Tj=n 2 •u •u L=0 

where 

Gfn(E,f ) - differential elastic scattering-cross section 

in the center-of-mass coordinate system 

(barns/steradian) 

X = the de Broglie wave-length of the incident 

neutron divided by 2ir , 

PL(x) = Legendre polynomial" of order 

L_ (-1)J(21 - 2i): L-2J 

fL " f̂ fo' 

f0' = aT(E)/2ir>r2 

Thus, 
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crn(E,/) = frifl zi 2̂y1) fL(E)Pj-(cos f*) = 
2tt L=0  ̂

qT(E) £ (2L+l)fL(E)PL(coS f ) 
4 IT L=0 

We can transform this differential cross section expan­

sion into a probability distribution for the cosine of the 

scattering angle as follows: 

From the definition of the differential scattering cross-

section we must have 

chp(E) =r a n (B, i f * )  dfl = 2tt f an(E,î *) sin if*df 
4:otal v'o 
solid 
angle 

= gT(E) r 1  YZ (2L+1) fL(E) PL(cos i f * )d  cos i f *  
2 L=1 

' - fîifl 2 (2IrH) fL(E) f PL(cos i f * )  d cos i f * ,  
2 L-Q J-l 

The last step in this equation is permissable because of the 

convergence properties of the Legendre polynomials. 

It is easily shown that 

f P_ (x) dx = 0 for L ̂  0 
J-l L 

= 2 for L = 0 

Therefore, 

Oip (E) — (Jiji(E)/fQ 
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or, 

fo = 1 

"k 
Thus, the probability density function for cos f is: 

p(cos f*) = — CTn(E, cos i f*) = i X (2IrH)fL(E)PL(cosf*) 
aT(E) L=0 

Note that 

f p (cos if*) d cos iff* = 1 

For energies in the range of interest in the present 

study (0 to 4.5 Mev), the differential cross section expan­

sions were limited to a maximum of nine terms (13)? i.e., 

8 
p (cos f * )  = ~ ]EI (2L+1) fL(E) PT (cos f * )  

4 L=0 u 

This equation was put in the following more convenient 

form for use in the calculations. 

8 1 
P(x)= 2Z A,x 

j "0 J 

where x = cos if* 

The first nine Legendre polynomials and the corresponding 

coefficients, Aj, used in the calculations are as follows: 

Pc(x) = 1 

Px(x) = x 

P2(x) = | (3x2 - 1) 

P3(x) = k (5x3 - 3x) 
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P4(x) = (35x4 - 30x2 + 3) 

P5(x) = Jj- (63x5 - 70x3 + 15x) 

P6(x) = _1_ (23lx6 - 315x4 + 105x2 - 5) 
16 

P7(x) = -L (429x? - 693x5 + 313x3 _ 35x) 
' 16 

P8(x) = .JL. (6435X8 - 12,012x6 + 6930x4 - 1260x2 + 35) 

a °  =  ( i £ o + § f 4  +  l f y  -  < f  * 2  +  f f % >  

A, - (f fl + W£s' - ( T f3 + TT V 

A2 = <̂  f2 + W f6>" ( Wf4 + *8> 

% " <f f3 + ̂  f7> " W f5 

A4 = # £4 + f8> " W f6 

-5= Wf5-  ̂ * 7 

A6 = W f6 * 29t#â £
S 

A = 109,395 -
8 256 8 
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APPENDIX G 

Random Samples from the Maxwellian Velocity Distribution 

The velocities of the molecules of an ideal gas at ther­

mal equilibrium will be distributed according to the Maxwell 

velocity distribution (18), 

p(v)dv = dv = 4tt ̂ 2̂ rJ3/2v2e /21CbT dv (G-i) 

where n is the total number of particles per unit volume, 

n(V)dV is the number of particles per unit volume with veloci­

ties between V and V + dV, and p(V) is the probability density 

function for the velocity V. 

Consider the problem of selecting random samples from 

this distribution. Define a variable, X, by 

x  =  / % v  

The probability density function for X is obtained by substi­

tuting for V in equation G.I. 

. 0 -%2 
p(X) = _4 X2 e dX 

nTÎT 

Now, we truncate this distribution at X = 3.2 (jL.ê , we 

neglect the less than 0.03% of the velocities that lie beyond 

this point), and divide the X axis from 0 to 3.2 into 16 

intervals of 0.2 each. The probability that X will lie in a 

given interval, Xi-;L <( X <( is 
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Xi .%i_l 
P j_ — — Cĵ _2 — p (X) dX —J* p (X) dX 

where 

0 

f«x i 
C± = / p(X) dX 

0 

is the cumulative distribution at X̂ . 

Table 18 gives the cumulative distribution for each of 

the X divisions (22) . 

rXi 
Table 18, Cumulative distribution, Ĉ  - p(X)dX, for the 

° _ 2 
density function p(X) = -A X2 e X 

4ïr 

Xi Ci 

0.2 0.01735 
0.4 0.07890 
0.6 0.19226 
0.8 0.34459 
1.0 0.51064 
1.2 0.66464 
1.4 0.78926 
1.6 0.87859 
1.8 0.93587 
2.0 0.96894 
2.2 0.98621 
2.4 0.99440 
2.6 0.99794 
2.8 0.99933 
3.0 0.99984 
3.2 0.99999 

A random sample is picked from the distribution G.l by 

comparing a random number, Rg, from the interval (0, 1), with 

the cumulative distributions in Table 18. The X value that 
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corresponds to the first that is larger than or equal to R3 

is a random sample from the X distribution. Note that since 

p(r < r3) = r3 each X is selected with the correct probabil­

ity, The corresponding random sample, V&, from the distri­

bution G.l is given by 

" -pf 
If the particles involved have mass M in amu, and T is 

given in °K 

V± = 0.0012897 Ĵ Xi 

where V is in units of 10̂  meters per second. (This unit for 

V was chosen-for convenience in the fixed point calculations 

with the IBM-650 program). 
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APPENDIX H 

Energy and Direction Changes for Elastic Scattering 

at Low Energies 

When a neutron-nucleus elastic scattering event occurs 

at a neutron energy such that the neutron's velocity is com­

parable to the velocity of the bombarded nucleus due to its 

thermal motion, the equations presented in Appendices B, C, 

D, and E are no longer valid. At such energies, it becomes 

necessary to take into account the velocity of the nucleus 

and to correct for the chemical binding effects that become 

relatively more important as the energy of the incident 

neutron decreases. 

The following modifications in the elastic scattering 

treatment used at higher energies (Appendices B to E) were 

suggested by J. R. Triplett et al. (14a), (22) for elastic 

scattering events at thermal energies. 

First, a correction is made for the effect of chemical 

binding by allowing the effective nuclear mass to increase 

with decreasing energy of the incident neutron. 

In addition a velocity increment, AV, is added vectorial-

ly to the scattered neutron's center-of-mass velocity as de­

termined in the manner of Appendix B. This velocity incre­

ment is isotropically directed in the center-of-mass system of 

coordinates and has a magnitude selected at random from the 

Maxwellian velocity distribution for the particular nucleus 
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involved in the collision. The vector diagram for this 

process is shown in Figure 45. The outgoing neutron's veloci­

ty is taken to be the resultant of this addition. The follow­

ing definitions will be used: 

x = the direction of the slab normal 

V = the lab system velocity of the incident neutron 

(y and z are chosen such that V is in the x-z 

plane) 

Vc = the velocity, as measured in the lab system of 

coordinates, of the neutron-nucleus center of 

mass 

©i_1 = the angle that the incoming neutron's velocity 

makes with the slab normal 

Vn = the outgoing neutron's lab system velocity as 

determined with the method of Appendix B 

Vn* = the outgoing neutron's velocity (via Appendix 

B) as measured in the center-of-mass system 

AV = the velocity increment added to "Vn* to correct 

for the nuclear thermal motion 

Ve = the emergent neutron's velocity as measured in 

the lab system 

©i = the angle between V"e and the x-axis 

f = the angle between V and vn 

if* = the angle between V" and tfn* 

The direction cosines of tTc are: 



www.manaraa.com

196 

direction of v 

Figure 45. Vector diagram for a thermal energy neutron-
nucleus collision 

Figure 46. Two-angle designation of an isotropically 
distributed direction 
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a = cos ©£_i 

P = 0 

Y = sin 9i_! 

Elastic scattering at low energies (with the method of 

Appendix B) is isotropic in the center-of-mass system of co­

ordinates. Therefore, the direction of V̂ * can be specified 

by an angle, _0_, the cosine of which is uniformly distributed 

on (-1, 1), and an azimuthal angle, 03 that is uniformly 

distributed on (0, 2-w) (see Figure 46) . The direction cosines 

of VJJ* are thus specified by 

a" = cos -fl_ = 2R̂ -1 

P" = sinXl_sin 0 = ̂  1-(2R1-1) 2 sin 0 

y" = sinjfl cos 0 = 1- (2R^-1) 2 cos 0 

where R]_ is a number chosen at random from the interval (0, 1) 

and 0 is selected at random from (0, 2ir) . 

The incremental velocity, Éf3 is also isotropically 

directed in the center-of-mass system and its direction co­

sines are specified by 

a'" = 2Rg-l 

(3 '11 = 1- (2Rg-l)2 sin co 

Y 111 = l-(2R̂ -l) 2 cos a) 

where Rg is random on (0, 1) and co is random on (0, 2ir)  .  

The magnitude of &V is given by (Appendix G) 

AV = 0.0012897 X 
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where T is the temperature (°K), M is the mass of the nucleus 

(amu), and X is chosen at random from a probability table as 

described in Appendix G. 

We can now make the vector addition. 

The cosine of the angle between V" and Vn* is given by 
* 

|i = cos f = act" + PP" + TV" 

Let a1, P1 s 71 be the direction cosines of V̂ . 

From Appendix B, 

Vr = -22. = V 
c M+m 1+a 

V * = m = aV 
n M+m ~ 1+a 

nT 2 
v - V 1+a +2â , = VC_ 
n —m 1+a 

where 

C = ̂  l+a2+2a|x 

a = ̂  = nuclear mass/neutron mass 

Equating components along the x-axis, 

V̂ o" = + v/a" 

Therefore 

a' = Vc a + v* a" = a+ aa" 

Similarly, 

Vn v" 

Q • = â±âÊL_ 
C . 

ry I = "V+av" 
1 c 

The vectors Vn and ÂV can now be written in the following 

form: 
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Vn = (Vna ', VnP', Vny') = 

Vn 
— (a + aa", p + ap", 7 + ay") 

AV = (AVa,u, AVP111, AVy'") 

The resultant vector, Ve, is, therefore 

% = (V6x, V6y, Vez) = Vn + M 

where 

vex II (a + aa") + AVa'" 

Vey 
= Vn 
c 

(P + aP") + AVp '" 

Vez 11 

"I
.?
 

(y + ay") + AVy'" 

The magnitude of Ve is given by 

Ve2 = Ve 2 + Ve 2 + Ve 2 = v2°2 + AV2 + î .[(a+aa")a'" + 
e ex cy cz . 9 1 + a 

(1+a) 

(P+aP")P,M + (y+ay" ) y111 ] 

To find the angle between V"e and the x-axis, we equate 

components along the x-axis, 

Ve cos ©i = Vna' + AVa,H 

or finally, 

cos ©i = [V̂ a
1
+
+
aa "̂  + AVa'"] / Ve 

These equations, with the appropriate effective mass for 

the nucleus, were used to establish energy and direction 

changes for neutron collisions at thermal energies. 

In the present calculations, the nuclear mass was con-
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sidered to be a function of the incident neutron's energy only 

for the case of hydrogen collisions. Collisions with iron will 

in general, change the direction, but will not drastically af­

fect the energy (some exceptions to this occur at very low 

energies). Furthermore, the large capture cross section of 

iron, particularly at very low energies, means that the number 

of low energy iron collisions is relatively small. The low 

total cross section of oxygen compared to hydrogen also as­

sures that the fraction of low energy collisions that are 

with oxygen is small. Thus, neglecting the chemical binding 

effects in thermal collisions with iron and oxygen should 

introduce only small errors. 

On the other hand the increase of the effective mass of 

hydrogen with decreasing neutron energy must be taken into 

account. As discussed in detail in the main part of this 

paper, the effective mass scheme that seemed to give the best 

results in the calculations was approximately the following: 

MH = 2aH " 1 

where MH is the effective mass that was used for hydrogen and 

aH is the effective proton mass reported in reference (23). 

A graph of â  at 298°K is given as a function of incident neu­

tron energy in Figure 47 (22). 

In summary, the energy and direction changes for col­

lision number i occurring at low energy are given by 

Ej_ = ^ m Ve
2 
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Figure 47. Effective scattering mass of proton in water vs neutron energy 
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V 2 = _v!çL + AV2 + 2VW 
e (1+a)2 1+a 

[(a + aa")a'" + (P + ap")p'" 

COS 6j_ = 

v2 = 

a = 

P = 

7 

a » — 

+ ag") + AVa"' 
l + a 

2Ei-l 
m 

cos ©. , 1—X 

sin 

2R1 ~ 1 

+ (y + ay")y] 

/X 

,  H I  —  

P" = x J l  - (a" )2 i 

Y" = J1 - (a" )2 • 

a'" = 2Rg - 1 

p"« = >11 - (a1 ") 2 

= 1 - (a,M) 2 cos m 

C2 = 1 + a2 + 2ap, 

(x = aa" + PP" + yy" 

AV = 0.0012897 X 
VM 

where Rj and Rg are random numbers from (0, 1), 0 and a) are 

random angles from (0, 2ir), and X is a random variable select­

ed from a probability table as described in Appendix G. 
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APPENDIX I 

Rejection Technique for Picking Random Samples 

from a Distribution 

Consider a random variable X, a <[ X <( b, with probabil­

ity distribution function y = f(x) defined on the interval (a, 

b) as shown in Figure 48. Assume that it is desired to select 

random samples of X such that the selected samples will have 

the distribution f(x) as the number of samples becomes large. 

The following rejection method for doing this was proposed by 

von Neumann (4). 

1. Define a rectangle that completely contains f(x), 

such as the rectangle M'ab in Figure 48. 

2. Select a point (X, Y) at random from this rectangle. 

3. If Y is smaller than f(X), accept X as a sample from 

f(x). If Y lies above f(X), reject X and repeat 2 

and 3. 

To see that the accepted values of X have the proper dis­

tribution, we consider the probability of obtaining and ac­

cepting a given X value. If the point in step 2 is selected 

at random, the abscissa will be uniformly distributed on (a, 

b) and the ordinate will be uniformly distributed on (0, M'). 

The probability of selecting an X value that is in a small 

interval Ax is clearly Ax/(b-a), while the probability that 

the selected ordinate will lie below f(X) is simply f(x)/M'. 

The probability of selecting ah X in Ax at x and of accepting 
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Figure 48. Rejection technique for picking random samples 
from a distribution 
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this value is given by the product of these two independent 

probabilities or 

P(selecting X in Ax at x and accepting it as a 

sample) = f(X) Ax/to1(b-a) 

,i.£., the acceptance probability is proportional to f(X). 

Therefore, the accepted values will have the distribution f(x) 

as the number of samples becomes large. 

The rejection technique was used in the present study to 

select the cosine of the scattering angle in anisotropic 

elastic scattering events. The probability distribution for 

the cosine of the scattering angle (in the center-of-mass sys­

tem of coordinates) when a neutron of energy suffers an 

anisotropic scattering event is given by 

The rejection method for picking a cosine from this dis 

tribution is as follows: 

cos <(_ 1. 

2. Select two random numbers R]_ and Rg from the interval 

(0, 1). 

3. Let X = 2Ri - 1 

4. Calculate p(X) = k 

5. If M'R2 £ p(X), let cos f±* = X. If M'R2 > p(X), 

repeat steps 2 through 5. 

1. Let M' = the maximum value of p(cos i/̂ *) for -1 <( 
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Obviously, the utility of this method depends upon its 

efficiency, :L.e., upon the average number of trials that must 

be made in order to obtain a sample. The average number of 

trials per sample may be derived as follows (6). 

The probability that a given trial will be successful 

or the probability that the randomly selected point will lie 

in the shaded area of Figure 48, is equal to the ratio of 

the area of the shaded portion of Figure 48 to the area of 

the rectangle M'-a-i-b, :L.ê , 

rh 
p(success in one trial) = / f(x)dx/M1(b-a) = E 

Ja 

Since f(x) is a probability density function, 

rh 
/ f(x)dx = 1 
a 

Therefore, 

E = i—-
M'(b-a) 

and the probability that a given trial will fail is 1-E. 

We may now write the probability of n-1 failures followed 

by a success, :L.jS., the probability of n trials for a sample 

of X. 

P(n) = (1-E)n-1E = the probability density function 

for the number of trials needed 

to obtain an X 

The expected number of trials needed to obtain an X value from 

f(x) is, therefore, 
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n =ft np(n) = ± nEd-E)""1 = fi -E d(l-E)" 
n=l n=l n=l 

= -E f1-2'" 
n—x 

Now, 

oo 

and the expected number of trials is: 

n = -E -É_ ( ) = — = M1 (b-a) 
dE E E 

In selecting cosines of scattering angles in the present 

work, the expected number of trials was between 1 and 14, 

depending upon the material and the energy of the incident 

neutron. The majority of selections had an expected number 

of trials between 1.5 and 4. 
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APPENDIX J 

Generation of Cosines of Angles That Are Random 

on (0, 2ir) 

The azimuthal angle, 03 in a neutron scattering event 

usually is assumed to be uniformly distributed between 0 and 

2ir. one obvious method of obtaining such a random angle would 

be to let 0 = 2ttR, where R is random on (0, 1) . However, 

since only the cosine of the azimuthal angle is required in 

the present calculations, we can make use of a convenient 

technique suggested by von Neumann (4) to circumvent the 

lengthy cosine sub-routine. The method proceeds as follows: 

1. Choose two numbers, r̂ _ and r2, at random from (0, 1) . 

2. If r̂ 2 + r22 ) 1, reject r̂  and r2 and select two new 

random numbers. 
2r r 

3. If r,2 + r22 <( 1, let cos 0 = c 
rl2 + r22 

where c is plus or minus one with probability 1/2. 

The efficiency of this process is 2L . The resulting popula­

tion of cosines will have the same distribution as the co­

sines of angles chosen at random from (0, 2tt) . 

This method was used to prepare a table of approximately 

150,000 cosines of random angles. The random numbers employed 

were from the RAND table of random digits (14b). Each random 

number consisted of six digits. When the RAND table was ex­

hausted, the random digit cards were put in random order by 
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sorting on four random digits (not used in the calculations) 

in each card. The digits from each card then were put in 

random order as they entered the IBM-650 via control panel 

wiring, and the RAND table was reused to calculate a new set 

of cosines. The cosines were punched out 10 per card in the 

form .xxxxxxx on standard IBM cards. Two of these cosines 

were punched into each random input card to be used as cos J2f 

and cos œ as described earlier. 

Chi-squared and Kolmogorov-Smirnov goodness-of-fit tests 

were made, as described in Appendix A, for the cosines. The 

results of these tests are shown in Tables 19 and 20. 

Table 19. Chi-squared goodness-of-fit test of cosine devi­
ates (k=21) 

Deviates -2 log A P (-2 log V -2 log X) 

1-25,000 7.79 0.98 

25,000-50,000 8.01 0.97 

50,000-75,000 13.21 0.86  

75,000-100,000 7.68 0.98 

100,000-150,000 8.37 0.97 
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Table 20. Kolmogorov-Smirnov goodness-of-fit test of cosine 
deviates 

Deviates Maximum deviation Maximum deviation 
of sample at 5% significance 

level 

1-25,000 

25,000-50,000 

50,000-75,000 

75,000-100,000 

100,000-150,000 

0.0058 

0.0030 

0.0074 

0.0047 

0.0023 

0.0083 

0.0083 

0.0083 

0.0083 

0.00626 
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APPENDIX K 

Emission Probabilities for Iron Inelastic 

Scattering Gamma-Rays 

Inelastic scattering occurs in iron at incident neutron 

energies above 0.85 Mev. In such events kinetic energy is not 

conserved. The incident neutron is absorbed by the nucleus 

and immediately re-emitted with substantially reduced energy. 

The energy lost by the neutron leaves the nucleus in an ex­

cited state. The excitation energy of this nucleus then is 

given off in the form of gamma-rays. 

Cross sections for the production of inelastic scattering 

gamma-rays in iron have been compiled by Nuclear Development 

Corporation (13). These cross sections were used to prepare 

a table of emission probabilities as a function of incident 

neutron energy for the six inelastic scattering gammas of 

interest in this study (energies less than 5 Mev). The 

probability of emission for a given gamma-ray of energy Ê  is 

given by 

VEi-i> 
POO = -f-
^ in 

where is the cross section for production of the gamma-ray, 

o"in is the total inelastic scattering cross section for iron, 

and Ê _2 is the energy of the incident neutron. The resulting 

probabilities are given in Table 21. 

The energy range in which iron inelastic scattering 
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Table 21. Emission probabilities for iron inelastic scatter­
ing gamma-rays (13) 

Gamma energy (Mev) 
Energy of in-
cident neutron 

(Mev) 0.845 2.09 2.66 2.95 3.01 3.38 

0.897 1.0000 0 0 0 0 0 
0.943 1.0000 
0.991 1.0000 
1.042 1.0000 
1.096 1.0000 
1.15 1.0000 
1.21 1.0000 
1.27 1.0000 
1.34 1.0000 
1.41 1.0000 
1.48 1.0000 
1.55 1.0000 
1.63 1.0000 
1.72 1.0000 
1.81 1.0000 
1.90 1.0000 
2.00 1.0000 
2.10 1.0000 
2.21 0.9989 0.0011 
2.32 ° 0.9927 0.0073 v 

2.44 0.9810 0.0190 
2.56 CI.9634 0.0366 \/ 
2.69 0.8303 0.0648 0.1049 \/ 
2.83 0.7354 0.0987 0.1659 
2.97 0.6123 0.1379 0.1946 0.0552 
3.13 0.5333 0.1630 0.2148 0.0859 0.0030  ̂

, 3.29 0.4796 0.1828 0.2250 0.0985 0.0141 
3.46 0.4357 0.1941 0.2276 0.1084 0.0201 0.0141 
3.64 0.4129 0.2017 0.2219 0.1150 0.0215 0.0269 
3.82 0.4046 0.2075 0.2006 0.1196 0.0277 0.0401 
4.02 0.3978 0.2079 0.1792 0.1290 0.0287 0.0573 
4.23 0.4049 0.2055 0.1484 0.1408 0.0342 0.0662 
4.44 0.4061 0.2070 0.1210 0.1553 0.0390 0.0717 
4.67 0.4080 0.1998 0.0941 0.1?07 0.0458 0.0816 
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occurs was broken up into six intervals or groups. Table 21 

was then used to prepare a set of inelastic gamma-ray emission 

probabilities for each energy group. Each of these sets in­

cludes, of course, only those inelastic scattering gammas that 

are possible for the given energy group. These probabilities 

are given in Table 22. 

Table 22. Averaged emission probabilities for iron inelastic 
scattering gamma-rays 

Gamma energy (Mev) 

cident neutron 
(Mev) 0.845 2.09 2.66 2.95 3.01 3.38 

0-2.21 1.0000 0 0 0 0 0 
2.21-2.69 0.9840 0 .0160 0 0 0 0 
2.69-2.97 0.7828 0 .0718 0 .1354 0 0 0 
2.97-3.13 0.6123 0 .1379 0 .1946 0.0552 0 0 
3.13-3.46 0.5065 0 .1729 0 .2199 0.0922 0.0085 0 
3.46-4.02 0.4128 0 .2028 0 .2073 0.1180 0.0245 0.0346 
4.02-4.65 0.4063 0 .2040 0 .1212 0.1556 0.0397 0.0732 

Table 22 was used, as described in the program section, 

to select the energy change, in iron inelastic scattering 

events. 
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APPENDIX L 

Cross Section Data 

Most of the cross section data that were used in this 

study were obtained from a comprehensive compilation that has 

been made by the Nuclear Development Corporation of America 

(13), (28). In the NDA work, the energy range between 100 ev 

and 4.67 Mev was divided into 215 intervals. The following 

data from this compilation, in the energy range 100 ev to 

4.67 Mev, were used in the present study: 

Iron: Total cross section, inelastic scattering cross 

section, radiative capture cross section, in­

elastic scattering gamma-ray production cross 

sections, expansion coefficients for the dif­

ferential elastic scattering cross section (see 

Appendix F) 

Oxygen: Total cross section, expansion coefficients for 

the differential elastic scattering cross sec­

tion (see Appendix F) 

The total cross section for hydrogen at all energies and 

the total cross sections for iron and water at thermal ener­

gies were obtained from (15). At energies above 1 ev the 

total cross section for water was assumed to be equal to the 

sum of the cross sections for the hydrogen and oxygen nuclei 

in water. 

The radiative capture cross section for hydrogen was 
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assumed to vary inversely as the square root of the incident 

neutron's energy (1/V variation) from a value of 0.33 barns at 

0.025 ev (15). The capture cross section of iron for incident 

neutron energies of 0 to 100 ev was assumed to vary as 1/V 

from a value of 2.53 barns at 0.025 ev (15). The capture 

cross section for oxygen is negligible at all energies. 

The energy range from 0,to 100 ev was broken up into 20 

groups for the hydrogen data and into 9 groups for the other 

data. These low energy groups were not changed in the group 

combinations that will now be described. 

For each of the energy groups that have been described 

(215 from the NDA compilation, plus 20 for hydrogen data and 

9 for other data), the following constants were calculated: 

1. The expansion coefficients, Aj (see Appendix F), for 

the differential elastic scattering probabilities of iron and 

oxygen. 

2. The maximum values, M', of the differential elastic 

scattering probabilities for iron and oxygen (see Appendix I). 

3. The macroscopic total cross sections for iron and 

water. 

4. The capture probabilities for hydrogen and iron 

(capture probability = capture cross section/total cross sec­

tion) at energies above thermal. 

5. The inelastic scattering probability for iron (in­

elastic scattering probability = inelastic scattering cross 
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section/total cross section). 

A tabulation of these data was made and on the basis of 

this table, 128 of the energy groups were combined with the 

remaining 96 in such a manner so that the variation of the 

cross section data over the range of each energy interval was 

small. This combination resulted in a tabulation of the data 

in 96 energy groups from 0 to 4.67 Mev for all of the data ex­

cept those for hydrogen. The hydrogen data were tabulated 

into 107 energy groups (because of the larger number of ther­

mal groups for the hydrogen data). These final tabulations 

were the ones used in the program. 

The final data tabulations were used to establish the 

following energy regions in which the elastic scattering angle 

distributions, p(cos f ), have different functional forms (see 

Appendix F): 

Iron: <[ 0.0221 Mev = EiSOFe* elastic scattering is 

isotropic in the center-of-mass coordinate system, 

.̂<3., p(cos f*) = % 

Eisope < Ei-i < 0.601 Mev = EIIpe, p(cos f * )  

3 
= A. COS-V* 
j=0 • 

8 
y EII = 0.601 Mev, p(cos tf*) = j> Aj coŝ V* 

Fe j=o 

Oxygen: Ej._i < 0.172 Mev = Ê ĝ , scattering is isotropic 

in the center-of-mass system, , p(cos i]/*)= \ 
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Eisog < Ei_i < 3.29 Mev = Ê , p(cos ̂ *) 

3 i * 
= % Aj COS J f  

>o 
5 

E. 1 )> EJJ =3.29 Mev, p(cos f*) = %_cos^f* 
0 j=o 

where Ê _̂  is the energy of the incident neutron. 
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APPENDIX M 

Physical Constants 

Mass of the iron nucleus = 55.86400 amu (29) 

Mass of the oxygen nucleus = 16.00000 amu 

Mass of the proton = 1.007593 amu (18) 

Mass of the neutron = 1.008982 amu (18) 

Molecules of water per cubic centimeter at 298°K = 

3,334 x 1022 molecules/cm̂  

Atoms of iron per cubic centimeter at 298°K = 1.695 x 10̂ 3 

atoms/cm̂  

Boltzmann constant = kB = 1.38042 x lO~̂  ̂erg/°K (18) 
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APPENDIX N 

Curve Fitting Procedures 

General remarks 

Consider the problem of fitting a function, y = p(x), to 

a set of observations, p(x̂ ), i = 1 to N. The«best fit will 

be obtained for the set of parameters such that the following 

error function is minimized: 

N N 
Q = 2l [y(x±) - p(%i)]̂  = ZZ [y( X j _ ) 2  +  P(x±)2 - 2y(xi)p(xi)] 

i=l i=l 

N « N N o 
= ZZ [y(x±) ] - 221 p(x^)y(x^) + 2Z 
i=l i=l i=l 

where y(x̂ ) is the value of y = p(x) at x = Xj_. 

The conditions that must hold for Q to be a minimum may 

be written 

|| = 2± ̂ pl y(Xi) - 2%: !̂ llp(Xl) =0 
°° i=l 05 x i=l §5 

or 

21 [y(x±) - p(x.) ] = 0 ° (N.l) 
1=1 d5 x 

where 5 represents a parameter of p(x). Thus, N.l represents 

a set of k equations where k is equal to the number of param­

eters in p(x). The solutions of this set of equations give 

the parameters for the best fit. 

In general, this set of equations cannot be solved 
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explicitly for the best fit parameters. The methods used in 

the present study to obtain the best set of parameters will be 

discussed individually for the various functions used. 

Water layers 

Let y(Xj_) = A + Bxj_ + CXj_2. The equations N.l are linear 

in A, B, and C, and the solutions for the three parameters may 

be obtained explicitly. 

A = [g(bf - d2) - a(hf - Id) + b(hd - lb) ]/D 

B = [N(hf - Id) - g(af - bd) + b(al - hb) ]/D 

C = [N(lb - hd) - a(al - hb) + g (ad - b2) ]/D 

where 

D = N(bf - d2) - a(af - db) + b(ad - b2) 

and 

a = Z_ xjL 
i=l 

N 
b = ZZ 2 

&Ï 1 

a = f x̂  
i=i 1 

f = f: =i* 
i=l 

9 = H P(x±) 
i=l 

h = 2_ XiP(xi) 
i=l 
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JL 
i = Si %i2p(%i) 

1=1 

First iron layer 

The function to be fitted is 

. . Px 
p(x) = ae 

The equations N.l can be solved explicitly for a (because of 

the linearity in a), but not for P. One method of obtaining 

the best fit parameters is to make a first guess, p̂  for p, 

and to expand the function ê l + ̂ P)x in a Taylor's series, 

where AP is to be found so that p̂  + AP = (3 1 the best fit. 

By inserting only the first two (linear) terms of this expan­

sion, equations N.l can be solved for a and AP. These values 

are approximate, of course, because of the higher order terms 

that are thrown out. A new guess, P2 
= Pi + AP, for p is then 

inserted in the place of p, and the process is repeated. Suc­

ceeding values of Pj, as the process is repeated, will con­

verge to the best fit value for p. (Note that, given a value 

for p, the corresponding best a can be obtained explicitly in 

each instance). 

Unfortunately, this method is slow. The method was em­

ployed in some of the earlier work in this study, but the con­

vergence was inconveniently slow in most instances and almost 

prohibitively so in others. Therefore, a grid examination 

technique was used in the majority of the curve fitting calcu­
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lations. (All of the curve fitting described in this appendix 

was done with programs written especially for this project in 

the FORTRANSIT coding system.) The grid method proceeds as 

follows: 

1. A first guess for p, and initial values for a, b, and 

c (see below) are inserted into the program. The best fit 

value for a, corresponding to the first guess for P, is then 

calculated (via N.l) from 

a = i: p̂ i/vè ̂  
i=l i=l 

and the corresponding value of Q is calculated from 

N 2 

Q = 2_ [y(%i) - p(%i) ] 
i=l • ' -

Px± 
where y(xi) = ae 

2. The previous value for P is then multiplied by 

(1 + ab) and, using this new p, new values for a and Q are 

calculated. 

If the new Q is smaller than the previous Q, this step 

(step 2) is repeated. 

If the new value of Q is larger than the previous value 

of Q, (1 + ab) is replaced by (1 - ab) and step 2 is repeated 

using (1 - ab) instead of (1 + ab). 

If multiplying p by both (1 + ab) and (1 - ab) leads to a 

larger value for Q (poorer fit), the program goes to step 3. 
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3. The current value of b is replaced by cb, (0 <( c <( 1), 

and step 2 is repeated. 

This method becomes unwieldy if convergence to more than 

4 or 5 significant figures is desired? however, in the present 

study, this method was much faster than the expansion method 

described previously. Calculating time required to fit ten 

observed points was normally between 5 and 10 minutes for four 

significant figures in the parameters. 

Second and third iron layers 

The function to be fitted is 

p(x) = a cosh p(x-xQ) 

A grid method similar to that used for the first iron layers 

was used in fitting this function. The method proceeds as 

follows: 

1. First guesses for B and for xQ are inserted into the 

program along with values for a, b, and c. The best a is then 

calculated from 

N N 
a = Yi P(*i) cosh B(xj_-x0)/JZ. cosh2p(x-j-x ) 

i=l i=l 

and Q is calculated from 

N Q = Sl ~ P(xi) ]2 

where y(x̂ ) = a cosh Ç> (xĵ -XQ) . 

2. The previous value of (3 is multiplied by (1 + ab) and, 

using this new (3, new values for a and Q are calculated. 
I 
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If the new value of Q is smaller than the old value of 

Q, this step is repeated. 

If the new value of Q is larger than the old value of Q, 

(1 + ab) is replaced by (1 - ab) and step 2 is repeated using 

(1 - ab) . 

If multiplying the previous value of £ by both (1 + ab) 

and (1 - ab) leads to a larger value for Q, the program goes 

to step 3. 

3. The previous value of xQ is multiplied by (1 + ab) 

and, using this new xQ, new values for a and Q are calculated. 

If the new value for Q is smaller than the old value of 

Q, this step is repeated. 

If the new value of Q is larger than the old value of Q, 

(1 + ab) is replaced by (1 - ab) and step 3 is repeated using 

(1 - ab) . 

If multiplying the previous value of xQ by both (1 + ab) 

and (1 - ab) leads to a larger value for Q, the program goes 

back to step 2. 

Steps 2 and 3 are repeated until all changes [via 

(1 + ab) ] in the parameters Ç> and xQ lead to poorer fits 

(larger Q). The program then goes to 4. 

4. The current value of b is replaced by cb (0 (c < 1) 

and steps 2 and 3 are repeated. 

Typical computing times required with this method to ob­

tain the best fit parameters to four significant figures for 

ten observed points were between 10 and 40 minutes. 
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