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ABSTRACT

The accurate prediction of the spatial distribution of
neutron capture rates in nuclear reactor shields and structur-
al members is important in reactor design but, normally, is
not possible with the usual mathematical techniques. Design-
ers typically depend upon approximate methods bolstered by
experiment and by previous experience,

Because of the probabilistic nature of the physical
processes involved in the attenuation and capture of neutrons
in reactor components, the Monte Carlo method offers a
promising calculational tool with which to attack such prob-
lems. The present paper presents the methods used and the
results obtained in a Monte Carlo study with an IBM-650
digital computer of the spatial distribution of neutron
captures in a series of six alternating semi-infinite slabs
of iron and water, from a neutron source located at one face
of the slab array.

The capture data were obtained in the form p(x) = the
capture probability at the position x per unit x per inci-
dent source neutron, where x is the distance into the slab
array as measured along the slab normal. The following func-
tions were fitted to the capture probability data:

First layer in the array (an iron layer): p(x) = aeBx

Other iron layers: p(x) = a cosh B(x-xy)

Water layers: p(x) = A + Bx + Cx2



where x = zero at the left face of each layer. Empirical cor-
relations of the parameters (a, P, Xo, A, B, C) were obtained

as a function of source energy, between 0.0l Mev and 4.5 Mev,

for two geometries: 1) all s«ab thicknesses equal %"% and 2)

all slab thicknesses equal 1",

Large resonances in the iron total cross section affected
the capture distributions. Streaming of neutrons ﬁhrough the
iron layers and into the water layers occurred for source
energies near the large 25 kev anti-resonance in the iron to-
tal cross section. The resulting increase in the thermaliza-
tion rates led to increased capture rates in the array. A
smaller, opposite effect (reduced capture rates) was observed
for source energies near the positive resonance at 0.03 Mev
in the iron total cross section.

The most important variables in determining the capture
rates were the source energy and the thicknesses of the water
layers. The capture distributions appeared to be relatively
insensitive to changes inzthe source angulér spectrum,

Reflection and transmission fractions were cbtained as a
function of source energy for the two geometries. The effect
of the 25 kev anti-resonance in the iron total crosé section
was clearly evident in the reflection data. The angular dis-
tribution of the reflected neutrons closely approximated a
cosine angular distribution, while the transmission angular

spectra were somewhat more peaked in the forward direction.
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Known physical characteristics of the attenuation and
capture processes were used to improve the Monte Carlo
estimates. The results obtained exhibited predictable quali-
tative characteristics to a very satisfactory degree. All of
the features that would be expected in the capture curves, on
the basis of physical consideratidns, were present in the
final capture curves obtained.

The rigorous determination of the statistical uncer-
tainty of the capture curves and correlations was not practi-
cal; however, upper limit estimates were obtained and these
were small enough so that the results were considered to be
meaningful,

It was found to be more efficient to feed the random in-
put data into the IBM—650 on cards than to calculate these
data internally. The random input data consisted of random
digits from the RAND table of 1 million random digits, ran-
dom exponential deviates.from a table of 300,000 such devi-
ates calculated for this study, and cosines of angles that are
random on (0, 27), from a table of 150,000 such cosines cal-

culated fcr this study.



INTRODUCTION

Energetic nuclear radiations emanate from the core of an
operating nuclear reactor. A wide variety of difficult and
often critically important reactor design problems is con-
cerned with the attenuation and absorption of these radia-
tions in shields to exclude the radiatiocns from areas of the
reactor plant in which they would be destructive to materials
or dangerous to personnel,

Certain components of the plant must be subjected to high
radiation levels because of their particular function in the
reactor complex. Examples of such components include core
structures, core-containing vessels, "thermal shields" which
typically protect the core vessel from core radiations, and
the various shield structures themselves,

The attenuation and absorption of nuclear radiations in
these materials cause internal.heating and attendant therma;
stresses so that the determination of rates cf absorption of
nuclear radiations in reactor components, particularly in
structural members, becomes quite important. The magnitude
and spatial distribution of heating produced by nuclear radia-
tions in these members must be determined accurately for ef-
ficient design.

The accurate prediction of radiation heating rates in re-
actor structural members is normally not possible with the

usual mathematical techniques. This is particularly true if



the specific radiation field of concern is composed of neu-
trons, with various spectra of energy and direction of travel.
No satisfactory method exists at present for calculating the
diétribution of neutrons in materials with dimensions that are
small compared with the neutron mean free path in the material.
This is the usual case in reactor structural members and cer-
tain shielding components, e.g. the thermal shields mentioned
earlier., Designers typically depend upon approximate methods
bolstered by ekperiment and previous experience,

Neutrons in a nuclear reactor Adeposit energy in (nonfis-
sile) materials through which they pass by three mechanisms:
(1) elastic collisicns in which a portion of the neutron's
kinetic energy is transferred to the nuclei of the medium by
billiard-ball type collisions, (2) inelastic collisions in
which part of the neutron's kinetic energy is transformed into
excitation energy of the bombarded nucleus, which then decays
to the ground state by emission of gamma rays, (3) capture of
the neutron by the nucleus, the binding energy of the neutron
being given off in the form of gamma rays. The energy in-
volved in this latter so-called radiative capture reaction is
usually larger than that in the other two reactions.

The neutron capture process is significant only at low
neutron energies; however, low energy or "thermal" neutrons are
predominant in most present-~day reactors. Furthermore, most

neutron shields depend, for their shielding effect, upon



lowering the energy of the incident neutrons to thermal values
(moderation) whereupon the neutrons are captured by the shield
media, Therefore, heating effects produced by neutron capture
in reactor shields and structural members are of considerable

_importance in reactor technology.

The present study deals with the determination of neutron
capture distributions in multiregion structures of iron and
water. Iron was chosen for this study because of its obvious
importance as a structural material. Water was chosen be-
cause of its widespread use in the reactor field both as
moderator and as coolant. Iron and water are used together
in such areas as: thermal shields, core structures, heat ex-
changers, and coolant and steam piping.

The difficulties encountered in attempting to describe
the attenuation and capture of neutrons through thin multi-
region configurations arise not in describing the microscopic
processés that are involved, but rather in txying to predict
the net macroscopic averages or effects of these microscopic
processes. The types of interactions that a neutron may un-
dergo in reactor materials are known, as are, for the most
part, the probability distributions for changes in the state
variables (position, energy, direction of travel) of a neutron
at each interaction.l Mathematical difficulties arise when

lIt should be pointed out that these microscopic proba-
bility laws for neutron interactions and accompanying state
changes are the most that can be "known" about the transport

of a neutron since the phenomena are entirely probabilistic
in nature. ' «




one tries to translate these random events into equations for
predicting the average effects of many, many such events.
These difficulties are compcunded if the system being con-
sidered consists of several regions of different materials in
which the microscopic probabilities (measured by the so-called
iﬁteraction cross sections) vary with position as well as with
the energy of the neutrons,

Because of the probabilistié nature of neutron interac-
tions with matter, the Monte Carlo method offers considerable
promise as a means of attacking difficult problems in neutron
tran5port.‘ Monte Carlo techniques have been used successfully
in a number of such problems in the nuclear reactor field (1),
(2), (3). The advent of larger and faster computing machines
and increasing familiarity of workers in the field with the
method may establish Monte Carlo as a standard calculational
tool in nuclear reactor design,

The field of Monte Carlo originated during the early and
mid 1940°'s apparently as a result of suggestions advanced by
J. von Neumann and S, Ulam at Los Alamos. Virtually nothing
appeared in the open literature concerning Monte Carlo until
about 1949, 1In June of that year, the first symposium on
Monte Carlo was held in Los Angeles under the sponsorship of
the RAND Corporation and the National Bureau of Standards,
with the cooperation 6f the Oak Ridge National Laboratory.

The proceedings of that conference were published by the NBS



in 1951 (4}.

Dr. A. S. Householder of ORNL makes the following state-
ment concerning Monte Carlo in the foreword to these proceed~
ings,

"The Monte Carlo method may briefly be de-
scribed as the device of studying an artificial
stochastic model of a physical or mathematical proc-
ess. The device is certainly not new. Moreover, the
theory of stochastic processes has been a subject of
study for quite some time, and the novelty in the
Monte Carlo method does not lie here. The novelty
lies rather in the suggestion that where an equation
arising in a non-probabilistic context demands a
numerical solution not easily obtainable by standard
numerical methods, there may exist a stochastic proc-
ess with distributions or parameters which satisfy the
equation, and it may actually be more efficient to
construct such a process and compute the statistics
than to attempt to use those standard methods.

"Simple and natural as this suggestion seems,

once it is made, someone had to make it first in a

voice loud enough to attract notice. The voices seem

to have been chiefly those of Ulam and von Neumann,
though Enrico Fermi , . . also contributed."”

Many of the techniques found under the label of Monte
Carlo in the literature are not new to statisticians. They
have used similar methods for many years in survey sampling
and model sampling procedures. Nevertheless; the field of
Monte Carlo appears to have originated almost independently of
the statisticians. A, W. Marshall in the introduction to the
proceedings of a Monte Carlo symposium held at the University
of Florida in 1954 (5) says,

"The statisticians had . . . been using model
sampling methods to investigate some of their prob-

lems . . . since the early 1900's. Their use of
sampling reached a peak in the period 1925-1935 and



then died off., However, their work was concerned

with probabilistic problems so that they were not

interested in the sort of thing which might lead to

the original von Neumann-Ulam idea . . . . In any

case the statisticians did not have the analogue

idea and this is what got Monte Carlo in its current

form started." :

The field was dominated by the original analogue idea un-
til about 1950. Since that time, there has been a relative
decline in interest in the analogue solution of deterministic
problems and an increase in the interest of the statisticians
in the field of Monte Carlo. The field has been dominated in
recent years by practical applications to problems with a
probabilistic basis, typical of which are the particle dif-
fusion problems. The usual procedure in these problems is to
translate the functional equations describing the diffusion
process back to a probabilistic basis as found in nature and
then to simulate the diffusion process directly by stochastic
methods. In the reference cited earlier (5), Marshall points
out,

"The most important practical applications thus
far have had a probabilistic basis; the influence of
the original Monte Carlo idea has beern. to suggest

- treating them directly as probabilistic problems rather
than attempting a difficult, if not impossible, ana-
iytical solution. The translation and later retrans-
lation of problems from probabilistic terms to non-
probabilistic mathematical problems and back again has
been by-passed,"

Many references exist that describe both theoretical and
applied work that has been done in the field of Monte Carlo

(3), (4), (5}, (6), (7), and no additional background will be



given here. Suffice it to say that the variety of problems
that have been attacked with Monte Carlo and the ingenuity
that has been displayed are impressive,

The present application of the Monte Carlo method is a
direct stochastic simulation of a particle diffusion process,
that of the diffusior. and capture of neutrons in an assembly
of alternating iron and water regions. The remainder of this
paper will elaborate upon the details of the methods used, but
a brief description of the basic approach is in order here.

A neutron is considered to be incident upon an array of
iron and water slabs. A "history" or trajectory for this
neutron through the assembly is calculated by specifying, via
stochastic meﬁhods, the interactions of the neutron with the
media and the changes in the state variables of the neutron at
each such event. These specifications are made by random
selection from the probability distributions describing each
quantity. By generating many of these histories, usually with
the aid of a high speed computer, one can simulate a low in-
tensity experiment.

The potential advantages of such a simulation are obvious.
Experiments that are too difficult or too expensive to perform
in the laboratory may be readily amenable to study by simula-
tion with the computer. Of equal importance is the ease with
which parameters such as geometry and neutron energy may be

changed in the computer program. This contrasts markedly with



the usual difficulty with which such changes are made in the
laboratory.

Clearly, two things are essential for the success of the
simulation. First, the number of histories must be large
enough to be statistically meaningful and, secondly, the basic
microscopic probability laws describing the processes involved
must be known. It should be noted, however, that given these
probability laws, there are no approximations in the calcula-
tions. Indeed, the method is inherently realistic, the only
intrinsic limitation being the necessity of obtaining statis-
tical significance in a reasonable amount of calculating time.

The machine employed in the present study was a basic
IBM-650 digital computer with alpha device. This machine has
a 2000 word memory of the magnetic drum type. Each word is of
fixed length aﬁd contains ten digits plus a sign.

The array examined was that of Figure 1. The layers are
semi-infinite, the only significant dimension being measured
along the normal to the assembly. Thicknesses studied were in
the range % to 3 inches.

The geometry of Figure 1 was chosen primarily as a con-
cession to the limited capacity and speed of the computer that
was used. The limitation of slab geometry is not considered
to be serious. The results should have application to a vari-
ety of geometries that only approximate that of Figure 1 in an

area of dimensions comparable to the neutron mean free path.
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SOLUTION OF NEUTRON TRANSPORT PROBLEMS

The usual mathematical methods of solving neutron trans-
port problems are based upon the Boltzmann transport equation
(8). The steady state form of this equation is:1

— - —

-1 grady £(E, 1%~ £(8, LL®) [3 (B, B)+ 3,(E, )]
+ S(E,ﬁ,’k) |
+de'd_r'T: £(E', I',X) Sg(E'~E, N > 1,%) =0
where,
' f(E,:fi¢§3 = the angular flux = number of neutrons
in dX about X, with energy in dE about
E, and with velocity in the solid
angle dri about &% times the magnitude
of the neutron velocity
m = the neutron mass
X = the position vector
J3.= a unit vector in the direction of the

neutron velocity

E = the neutron kinetic energy
2s = the scattering cross section of the
medium
25 = the absorption cross section of the
medium
1 -A/ = > . -—
25 (E'=E, )= 0 ,X) = the cross section at X for scattering

from E' to E and ). ' to (3

1Tt is assumed that the material is isotropic, i.e., that
the cross sections do not depend upon the direction of the in-
cident neutron,
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S(E,Iil;§) = the neutron source
A considerable simplification in this equation resul's if
the neutrons are monoenergetic. The resulting monoenergetic
steady state equation is
-3¢ grady £(71, B- [2s@®+ 2a® ] £(0L,%)
+fd‘_<”5_'f(ﬁ_ X S (A>T, B+ s(FL, X =0

Normally, one is concerned with a spectrum of neutron
energies. The usual procedure is to divide the spectrum into
a number of "groups' such that an effective energy and an
effective set of the pertinent physical constants may be de-
fined for each group as if there was no energy variatiocn with?
in the group. The monoenergetic transport equations for these
groups are coupled in that neutrons leaving one group form
part of the source for other groups. The resulting problem is
;hat of solving this system of coupled equations.
| The Boltzmann equation cannot,'in general, be solved
rigorously. A large variety of methods exists for obtaining
approximate solutions to this equation for special cases, A

few of these are described below.

Diffusion Theory

If the neutron angular flux is isotrbpic (which will be
true only if the spatial variation of the flux is small; i.e.,
if there are no sources or boundaries within several mean
free paths of the point in question and if the absorption

cross sections are small), a scalar flux, @, may be defined
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for which Fick's law applies.

JT=-D grad &
where J is the neutron current or the net rate of flow of
neutrons in the direction of 32 and D is the neutron dif-
fusion coefficient at X.

Fick's law leads to the following relatively simple
steady state diffusion equation (9):

div [D grad # ()] - Z3(x) & ® +5E =0
or
D g(x) - 2, (%) &) + s =0
for a homogeneous medium,

Examples of assumptions that are often made (singly or in
combination) in special cases to enable specific problems to
be solved with diffusion theory are:

1) All scattering events are isotropic in the center-

of-mass coordinate system.

2) The absorption cross sections are small.

3) The energy of a neutron is unchanged“by scattering
events.

4) No inelastic scattering is present.

5) Experimentally determined constants are used in the
edquations to obtain solutions to problems that are
similar to the experimental problem.

These methods and approximations are used with varying

degrees of success depending upon the particular application



13

and how closely the actual problem resembles the assumed prob-
lem,

A more rigorous form of the Boltzmann equation than is
afforded by diffusion theory is necessary if the flux has a
pronounced angular dependence, 'Again, assumptions such as are
listed above lead to simplifications in specific cases and
enable adequate solutions to be obtained in certain of these
special problems.

A wide variety of numerical techniques has been devised
for obtaining solutions to the Boltzmann equation. These
methods are usually limited by convergence difficulties, i.e.,

by the computing time that is required. Two typical methods

of this type are described below.

Spherical Harmonics Method (Higher Order Diffusion Theory)

The angular flux is expanded in a series of Legendre
polynomials that terminates after n terms (Pn approximation).
The resulting system of equations is usually solved by numeri-
‘cal methods to obtain the coefficients such that the expansion
approximates the solution to the Boltzmaﬁn equation., The
larger the number of terms in the expansion, the more accurate
will be the resulting solution, Convergence is rather slow,
and the computational work required increases rapidly as the

number of terms in the expansion is increased. The method be-

comes unwieldy for difficult problems.
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Carlson's 8, Method

In this method, the angular flux distribution is assumed
to be a linear function of the cosine of the angle over each
of n subintefvals into which the cosine axis is divided. This
makes it possible to integrate the Boltzmann equation, again
with numerical methods, in a variety of problems. The com-
putations again become prohibitively laborious for difficult
problems.

All of the methods outlined above are unsatisfactory for
the solution of the problem described earlier in this paper
(thin iron and water layers). In this problem, the dimensions
of the slabs are of the same order of magnitude as the mean
free path of neutrons in the assembly, and ﬁhe absorption
cross section of iron is large. Hence, there will be a large
spatial variation in the neutron flux and the flux will be
markedly anisotropic. Furthermore, over much of the range of
energies of concern, significant inelastic scattering occurs
in iron, and elastic scattering in both iron and oxygen is
highly anisotropic. In short, none of the commonly made as-
sumptions in neutron transport theory are valid, and the so-
lution of the problem with the usual mathematical methods is
very difficult if not impossible. Solution of such problems
is especially tedious with a machine such as the IBM-650.

The Monte Carlo method, while too laborious for use in

solving problems in which the simpler approximate methods are



15

adeduate, may be used to sclve difficult problems with com-
paratively little more computing labor than for the simpler
problems,

Thus, for the solution of relatively simple neutron
transport problems, or in problems in which only very approxi-
mate answers are required, various of the approximate analyti-
cal methods are certainly superior to Monte Carlo. On the
other hand, for complex neutron transport problems, the Monte
Carlo method may offer a much more tractable or, indeed, the

only available method for obtaining adequate answers.
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DEFINITIONS OF PROBABILITY DENSITY FUNCTIONS -~

TRANSFORMATION OF RANDOM VARIABLES
Definitions

Random Variable - A random variable is a duantity that is
associated with the outcome of a game of chance, or with an
event of a specific class in such a manner that the random
variable takes on a definite characteristic value for each
possible outcome or event in the class.

For example, a random variable Z might be associated with
the outcome of a toss of a die, where Z = the value of the up-
turned face of the die. As another example, the value of a
point selected at random from the interval (0, 1) of the real
line could constitute a random variable.

Probability Density Function (Probability Distribution
Function) - Associatéd wifﬂwé random variable will be a prob-
ability density function giving the complete set of probabil-
ities, P(A), for all of the possible values, A, that the ran-
dom variable may assume.l

For the game of tossing a die, the probability density
function is discrete, i.e., the possible outcomes are finite
in number. In this instance (for a true die),

P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = 1/6

In contrast, the number of points that may be selected at

1 e

The definitions and equations presented in this section
may be extended in a straightforward manner to multivariate
distributions.
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random from the interval (0, 1) is infinite. The correspond-
ing density function is, therefore, continuous. The probabil-
ity density function, p(x), for a continuously distributed
random variable (or "variate"), X, is defined by

p(x)dx = the prdbability that the random variable will

take on a value lying in dx about x
where dx is a small increment of x. v

The probability density function for a number selected at

random from the interval (0, 1) is

p(x) =1
(I+ should be noted that the integral of a probability density
function over its range of definition, i.e., over all possible
values of the random variable, must be equal to 1 since the
probability of any outcome is 1.)

Cumulative Density Function - The cumulative density
function is the integral (or the sum if the distribution is
discrete) of the density function from the lower bound of def-
inition to a specified value x. It gives, therefore, the
probability that the random variable will take on a value that
is less than or equal to x.

If p(x) =1, 0 { x < 1, the cumulative density function

will be,

F(x)

X
f p(x')ax' = P(X { x) = x = the probability
0 . :

that a selected value, X, of the random vari-

able will be less than or equal to x.
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Transformation of Random Variables (10)

Consider a random variable, X, with probability density
functrion £(x), a { x { b. Assume that a second variate, ¥,
is defined by Y = h(X), where h is a single-valued function of
X such that a unique inverse X = h'l(Y) exists.

The probability density function, g(y), for Y is given

by,
-1
gy) = £ (hly)] L

Now, since h gives a one-~tc-one correspondence between X
and Y, it is clear that P(X < x) is equal to P(Y < y), where
X is a specific sample from the population £(x) and y = h(x),

Y = h(X). Thus,
% N
re = [ fenee = [ ogwiar = e
“a h(a)

If g(y) is the uniform distribution,

g(y) =l for 0 y {1
= 0 elsewhere
we have
b4 v
Fx) = [ fxax' = [ ay' =y (1)

va J o

Equation 1 has been called the "Golden Rule" of Monte
Carlo (2). Its utility lies in the fact that it may be used
to select random samples from the distribution £(x), provided

that equation 1 can be solved for x.

Independent random samples are obtained easily from the

uniform distribution, g(y), by selecting random numbers from
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the interval (0, 1) as mentioned earlier. Furthermore, for a
given sample Y, G(Y) is just equal to Y and, by equation 1, Y
is also equal to F(X) where X = h"lCY). Thus, the solution of
"equation 1 for X supplies a random sample from a distribution
with cumulative density function F(x), i.e., from the distri-
bution with density function f£(x).

This method does not necessarily constitute the most ef-
ficient means of selecting random samples from f£(x), even if
equation 1 can be solved for x. However, the "Golden Rule"
contained in equation 1 has been used extensively in the Monte
Carlo field, and its generality makes it a very useful tool,.

The following example should serve to illustrate the
method more clearly.

Consider the problem of selecting a random sample, X,

from the exponential distribution,

-Kx

£f(x) = Ke 0 ( x { @

—

We select a number, R, at random from the interval (0, 1) and

substitute into equation 1 to get

X
f ke Fax = 1 - e = = g
0
or
In (1-R

X ===

Note that (1 - R) is random on (0, 1) so that we could

use equally well,
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NOMENCLATURE

The symbols used in this paper are defined, for the most
part, in the text and a given symbol may be used for severai
different quantities. Certain symbols are used rather con-
sistently throughout the text, however. The following list
of definitions for such symbols is included to avoid the
necessity of redefining these symbols in detail at each ap-
pearance. In a few instances in the following list, a given
symbol will have two definitions. The particular meaning to
be attached will be clear from the text.

The cgs (centimeter-gram~second) system of units was
used except where indicated otherwise. In general, the system
of units being employed is not important in the derivations
and in the discussions, and no units have been included in
this list of definitions. (It is essential, of course, that
a consistent set of units be used).

The following definitions will apply:

E; = the kinetic energy of a neutron after the ith col-

lision in a history

Eo, = the neutron energy at the beginning of a history

kp = the Boltzmann constant

M = the mass of a nucleus involved in a collision
m = the mass of the neutron

p(x) = the probability density function for a continuously

distributed random variable X; the capture
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probability at the position x per unit
distance per incident neutron

the probability that the event A will oc-
cur; the probability that the discretely
distributed random variable being consider-
ed will take on the value A

absolute temperature

velocity

the neutron "weight" after the ith colli-
sion in a history

the neutron "weight" at the beginning of a
history

the position, as measured along the hormal
to the slab array, of the ith collision in
a history

the neutron position, as measured along the
normal to.the slab array, at the beginning
of a history

the microscopic absorption cross section
for neutrons of energy E

the microscopic scattering cross section

for neutrons of energy E

-the microscopic inelastic scattering cross

section for neutrons of energy E

the microscopic total cross section for
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neutrons of energy E

the microscopic total cross section of
oxygen for neutrons of energy E

the microscopic total cross section of hy-
drogen for neutrons of energy E

the microscopic total cross section of a
water molecule for neutrons of energy E
noB(E) or noyp = the macroscopic cross
section corresponding to the microscopic
cross section op, where B designates a
specific type of cross section and n is the
number of nuclei in the material per unit
volume

the scattering angle in a neutron-nucleus
collision as measured in the laboratory
system of coordinates

the scattering angle in a neutron-~nucleus col-~
lision as measured in the center-of-mass sys-
tem «f coordinates

the angle between a neutron's velocity and
the slab normal after the ith collision

the upper limit of the thermal energy range

for nuclide A
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A STRAIGHTFORWARD MODEL

Before proceeding to a description of the program used in
this study, it will be instructive to examine a straightfor-
ward Monte Carlo simulation of the problem described in the
‘introduction. The straightforward method, while so ineffi-
cient as to be impractical, embodies most of the basic fea-
tures of the actual simuiation that will be described later,
and it will sexrve té introduce most.of the relevant equations.

As mentioned earlier, random neutron paths or histories
through the assembly being examined are calculated'ohe by one,
thereby simulating a low intensity experiment. If the number
of such histories is large enough, one obtains statistically
meaningful averages for the characteristics or effects that
are being sought, e.g., collision densities, spectra, life-
times, or, as in the present study, eventual fates,

The configuration to be studied is shown in Figure 1.

The six slabs, with thicknesses defined by t; to tg, are as-
sumed to be infinite in the y and z directions, and distances
along the direction normal to the array are measured by x.

Consider a neutron impinging upon the left face of this
assembly and traveling with a velocity ﬁ; directed at an angle
6o to the slab normal and with corresponding energy E,. The
starting point will be given by x = Xo. The state of this
neutron at any point in its travel through the slab array will

be characterized by the three quantities:
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% = the position of the neutron along the slab normal
e = the angle that the neutron‘s velocity vector makes
with the slab normal

E

the (kinetic) energy of the neutron

We wish to generate a random history for this neutrxon
through the array so as to simulate the trajectory of an
actual neutron impinging upon a real array and to determine
the fate of the neutron and the values assumed by its state
variables (position, energy, direction of travel) when the
history terminates. To do this, we must specify the types and
positions of the interactions that the neutron undergoes with
the materials of the slabs and the changeé in the state vari-
ables at each such collision. Each of these specifications is
to be made in a completely random manner, subject only to the
appropriate probability law in each instance.

To generate this history we proceed as follows:

1. Source. The neutron source is specified by as-
signing values to xp, ©p, and Eg. For example, assume that
the source is isotropic (equal in all directions, i.e., the
cosine of the emission angle is uniformly distributed between
-1 and 1), monoenergetic, .and located at the left face of the
assembly of Figure 1. We set x5 = the coordinate of the left
face, Eg = the source energy and cos éo = R, where R is a num-
ber selected at random on the interval (0, 1) (only neutrons

with cos 6, » 0 enter the assembly).
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2. Distance Between Collisions (Appendix A). The
distance, Axi, along the direction x to the next collision for
a neutron with energy E;_j; and located at xj_3 is governed by
the probability distribution,

- (B, Ax4 /cos 6;
_ 2p(Ey_1) p(Bi-1) Axifeos &5

plAxi) = cos 611
We select a value of Axj at random from this distribution
by picking a random sample, ¥;, from an exponentially distri-

buted population (Appendix A) and then calculate Axy from,

Y; cos &3

ey = Zp(Bj-1)

The position of the next collision (ith collision) is
then given by,
Xi = Xj-1 + Axj
We make the provision, however, that x; must lie in the same
slab as x;_y, or in the first slab in the direction of the
neutron's travel if x;_3j is located at..a boundary of a region.

If xj lies past the next boundary, t in the direction of

J"
travel, x;_; 1is set equal to tj and, the process is repeated
using a new Yj and the total cross section for the new region.

If x; exceeds tg or is smaller than x,, the neutron is
considered to have been transmitted or reflected respectively.
This fact is recorded, along with Ej_j and cos ©;_3, and a new
history is begun.

When an Xj is established that lies in the correct regioh

with respect to xj-1 the ith collision is considered to occur
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at xj.
3. Type of Interaction. Having determined the posi-
tion of the ith collision, the type of interaction at this
point must be specified. The probability that an interaction
of type A will occur is given by,
P(a) = 0n(E5.1)/05(Ei1)
where,
O ==§:: ox = the total microscopic cross section for the
ail material
We must select eaéh type of interaction with the proper prob-
ability.
For illustration, assume that the collision occurs in

iron. The possiblé reactions at energies of interest here are
radiative capture, inelastic scattering, and elastic scatter-

ing, with corresponding probabilities,

GS(Ei_l)/cT(Ei_l) = probability for elastic scattering

din(Ei_l)/dT(Ei_l) probability for inelastic scattering
Ga(Ei_l)/GT(Ei_l) = probability for radiative capture

where,

To select a type of interaction with the proper probability we

select a number R at random on the interval (0, 1) and make

the following specification, depending upon the value of R.

o
If R < Bé.we specify the interaction to be elastic scat-
T
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Y o o
tering, if Eﬁ { R K _§_§__£E. we specify inelastic scatter-
T T

ing, and for R ) E§_i;fi§, we specify radiative capture.
O

If we recall that, upon selecting a number R at random
from (0, 1), the probability of obtaining a number that is
less than or equal to some number k is just equal to k, then
it is clear that each of the possible interactions is speci-
fied with the proper probability.

The interactions of concern in this study are capture,
inelastic scatter, and elastic scatter in iron, and, in water,
oxygen elastic scatter and hydrogen capture and elastic scat-
ter. Radiative capture in oxygen is negligible.

4, Angle of Scatter. The angle of scatter is defined
as the angle between the incoming and the outgoing velocity
vectors of a scattered neutron. The probabilify distribution
deséribing this quantity depends dpon the incoming energy of
the neutron, the type of scattering event, and the species of
nucleus with which the interaction takes place. Those cases
of interest here are, at energies above thermal, elastic scat-
tering and inelastic scattering in iron, and elastic scatter-
ing in oxygen and hydrogen. At thermal energies only elastic
scatter from iron, oxygen and hydrogen is important.

At energies of concern in this study, inelastic 5catter-
ing in iron is approximately isotropic in the center-of-mass

system of coordinates (11), as is elastic scattering in
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hydrogen (12). Thus, for these events, we set
cos Wi* =2R - 1
where R is random on (0, 1).

Elastic scatter in iron and oxygen at energies above
thermal is not, in general, isotropic. The probability dis-
tribution for the cosine of the scattering angle in the
center-of-mass system for anisotropic scattering events is
given by aApolynomial expansion (Appendix F),

p(cos ¥,%) = ZL A, (B;_1)cos? y;*
i =1 i-1 i

A random cosine is selected from this distribution by a
rejection technique due to von Neumann and outlined in Appen-
dix I. This selection specifies the scattering angle in the
centér-of—mass system for such interactions.

For elastic scattering angles at thermal energies, see 8,

5. Aéimuthal Scattering Angle. The azimuthal scat~
tering angle, ¢i, is the angle through which the outgoing
neutron's velocity vector is rotated about the incoming ve-
locity vector. This angle is uniformly distributed £from O to
2r. A table of random samples of cosines from a population of
angles random on (O, év) has been prepéred with a method due
to von Neumann and described in Appendix J. A selection from
this table specifies the cosine of the azimuthal scattering
angle.

6. Angle with the Slab Normal of a Scattered Neutron's
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Velocity Vector. The angle that a scattered neutron's
direction of travel makes with the slab normal after col-
lision i is given, at energies»above thermal, by (Appendix E),
cos ©; = sin Y¥j sin 6.3 cos ¥ + cos Yj cos €5_1
Here, sin 6;_7 and cos ©j.] are obtained from the previous
collision, cos @i is obtained as described in 5, and cos ¥; is

obtained from (Appendix D),

1l + a cos wi*

cos Wi =

o + a? + 2a cos y;*

where,
a = M/m = mass of nucleus/neutron mass

For thermal energy collisions, see 8.

7. Energy Change in Scattering Events. The energy
change in an inelastic scattering event in iron is selected
from a table of emission probabilities for inelastic scatter-
ing gamma rays. Seven of these tables have been prepared, de-
pending upon the incident energy of the neutron. These tables
were prepared from data compiled by Nuclear Development
Corporation (13). The tables are described in detail in Ap-
pendix K., Selection of the energy change is made by means of
a random number as described in 3.

For elastic scattering above thermal energies the energy
change is given by (Appendices B and C), .

*
By 1 + a2 + 2a cos ¥y

Bi-1 (1 + a)2
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where a = M/m as in 6.

8. ’Events at Thermal Energies. For neutrons with
energies below 1 or 2 electron volts the nucleus can no longer
be considered to be at rest as at high energies (Appendix B).
In addition, chemical binding effects become important, i.e.,
the nucleus is no longer effectively unbound. The determina-
tion of the scattering angles and energy changes in scattering
events at thermal energies is consequently not a straightfor-
ward matter as at higher energies, Certain approximate
methods must be employed.

In the present work, a method described by J. R. Triplett
et al. at Hanford was used- (14a). The method is described in
detail in Appendices G and H. The results obtained by using
this method appear to be adequate and are discussed in later
sections of this paper.

Having established. that a neutron's energy has been re-
duced to a value in the thermal range by a previous collision
and that a scattering event takes place, the outgoing direc-
tion and energy are determined by the following equations,

cos O =[v(%l+ ag") + AVCl'j /Ve
v + a)

2 v2¢c2 2 . 2VAV
Ve = =0+ (AV)S 4 2¥BY g
(L +a)2 (4¥) 1+ a

U = (C(: + aan)all + (B + aBu)Blll + (,Y + a,Yu),Ylll

c?=1+a?+ 2apL
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L= cos ¥;* = aa" + BR" + yy"

a = M/m

Q = cos €51

g =0

Y = sin 651
a" = 2R} - 1

B =’JI—:—?;:T§.sin @

,Yn =-‘\‘l - (a")2 coSs SZ

alll = 2R2 - l

5"'=’Ji - (a'""2 sin W

v =1 - (a'")z cos W
R} and Ry = Random numbers from (O, 1)

@ and W = Random angles from (0, 27)
2E

| v2 - _ i-1
m
2KpT
AV = B Xy
M
X; =a variable selected from a probability table via

the method of 3 (see Appendix G)

Thgse procedures establish new state variables for a neu-
tron ha%ing undergone collision number i, The calculations
are repeated from collision to collision until the history is

terminated by capture of the neutron by the media or by the
| neutron's having been reflected or transmitted. A tabulation

of the number of captures as a function of x establishes a

capturé distribution in the array from a source of strength



32

equal to the number of histories calculated.

The angular spectrum, the energy spectrum, and number
spectrum of reflected and transmitted neutrons are a by-prod-
uct obtained from the calculations, provided that these have

statistical significance.
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THE STATISTICAL ESTIMATION TECHNIQUE

The straightforward method described in the previous sec-
tion simulates exactly the transport and capture of neutrons
through the array of Figure l. Answers produced by this
method will have large variances; i.e., large statistical un-
certainty, because only the last collision contributes to the
final answer. Many collisions must be calculated for each
such contribution. This will be true to an even greater ex-
tent for relatively small arrays in which most histories
terminate by reflection or by transmission. Thus a very large
number of histories will be redquired to obtain statistically
adequate results.

A method originated by von Neumann and his associates at
Los Alamos during £he 1940's may be used to decrease greatly
the variance of the predicted capture rates. This method has
been called "Statistical Estimation" (6) because an estimate
of the answer is made at each collision.,

In this method a weight, W;, constituting a fourth state
variable, is assigned to each neutron. This weight has value
Wo at the beginning of a history. No capture events are con-
sidered to take place as in the straightforward method. In-
sﬁead, all collisions are assumed to be scattering events. A
neutron thus survives all collisions. It survives a given
collision, i, however, with its weight reduced by a fraction

equal to the nonsurvival probability at that collision.
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°é(Ei-1)]
Tr(Bi) |

The x-axis is divided into n equal intervals, Axj, i =1

Wi = Wi_l 1-

to n. The weight decrease accompanying a collision in Ax; is
deposited in Ax;. The total accumulation of such deposits in
each Axj constitutes an estimate of the number of starting
neutrons that can be expected to suffer capture in Axj.

By means of this technique, the “capture" of each neutron
is distributed over many AX; intervals. Every history thereby
makes many small contributions to the ultimate capture distri-
bution instead of one large deposit as in the straightforward
method., The resulting variances for a given number of his-
tories are much smaller for the small deposits because of
their larger number,

If the concept of fractional neutrons is disturbing, one
can consider each history in the statistical estimation cal-
culation as representing Wo-starting neutrons which follow the
same random path through the assembly. At each collision ad-
vantage is taken of the fact that the probable fraction of the
neutrons entering the collision that will be captured, p; =

. On (Ei—l) W
omp(Ei-1)

probable number of neutrons that will continue to the next

j-1» 1s known exactly. One, therefore, knows the

collision and the probable number of neutrons that will be

captured, i.e., the "weight" that will be deposited by the
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collision. The accumulation of the deposited neutrons, or
weights, in Ax; divided by the total number of starting neu-
trons will be an estimate of the nonsurvival probability per

neutron (capture probability) in Axj.
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RUSSIAN ROULETTE

A neutron history in which statistical estimation is used
to score the results, as described in the previous section, is
clearly interminable, Some method must be used, therefore, to
terminate histories. This must be done in such a way so as to
leave the final results relatively unaffected.

One obvious manner in which this may be done is to ter-
minate a history when the weight, Wi, reaches a value so low
that any further contribution to the final results by that
neutron may be neglected. This method is extremely ineffi-
cient, however., The same amount of computing time is required
to reduce the weight of a neutron from 0.1 to 0.0l as is re-
quired to deposit the first 90% of the weight.’ Thus, most
of the computing time is spent in calculating relatively un-
important low weight collisions.

A much more satisfactory method was originated by Ulam
and von Neumann at Los Alamos. They called this technique
Russian Roulette for reasons that will become clear shortly.

In the Russian Roulette method of terminating histories,
the neutron is allowed to "play" a game of chance at all col-
lisions after its weight is redﬁced to some pre-assigned )
value, Wg. The possible outcomes of the game are that the
neutron survives with its weight increased or that the neutron
"dies" at the point of the collision. The probability of

survival and the weight increase for neutrons that survive are
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specified so as to produce, on the average, the same total
weight of continuing neutrons that would exist if the game was
not played.

Two variations of Russian Roulette were used in this
study. In the first, the neutron is allowed to continue with
probability equal to W;/W,. If the neutron survives, its
weight is set to W,. The other variation terminates the
history with a constant probability P. A surviving neufron in
this instance has weight Wi/(l-P). To select survival or
“death" with the proper probability, a random number, R, is
selected from the interval (0, 1) and compared with Wi/W, (or
1-P as the case may be). The neutron survives if R { Wi /Mo
(or if R { 1-P in the second variation).

The total weight of neutrons that survive the Russian
Roulette game and continue their histbry is, on the average,
unchanged from that in the low weight termination scheme de-
scribed previously. This may be seen as follows.

Let the probability of termination be P. The probability
of survival is 1-P, Now, if N neutrons reach Wp with weights
Wi and Russian Roulette is not employed, the total Weight of
the neutrons that continue their histories is NW;. All neu-
trons continue with weight Wj. With Russian.Roulette, the
average number of neutrons that survive is N(1-P), and these
surviving neutrons will have weight Wj/(1-P). The average

total weight of surviving neutrons is, therefore, N(l-P)Wi/
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(1-P) = NWj. In other words, with Russian Roulette we process
N(l-P) neutrons with weight Wi/ (1-P) instead of N neutrons
with weight Wy.

As may be obvious, introduction of Russian Roulette will
increase the variance of the results somewhat., This is due to
the reduction in the number of events at lower weights. How-
ever, the increased number of histories that will be required
to produce the same statistical accuracy as with the low
weight termination method will be compensated several-fold by
the savings in computing time accomplished in avoiding most of

the low weight calculations.
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RANDOM INPUT DATA

The random input data for these calculations were of
three types.
1) Random digits from the RAND table of one million ran-
dom digits (14b).
2) Random exponential deviates from a table calculated
for this project (Appendix A).
3) Cosines of random angles from the interval (0, 2m)
from a table calculated for this project (Appendix J).
As indicated, all of the random input data were pre-éal—
culated. This information was read into the machine as needed
by the program on standard IBM punched cards, This method is
considerably faster with the IBM~650 than would be the
generation of the random data internally during the course of
the calculations.
Fifty thousand random input cards were prepared. Each of
these cards contained the following:
Columns 1-30: six random exponential deviates in the
form xx.xxx
Columns 31-44: two cosines of random angles in the form
o XXXKRKXK
Columns 45-75: 31 random digits (20 of which were used
in the program).
Columns 76~80: serial number.

Between 15,000 and 30,000 of these cards were required
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for each problem that was run. Each time that the supply of
50,000 cards was exhausted, the cards were put in a new random
order by sorting on 3 or 4 of the unused random digits in each
card and the cards were reused. This procedure was repeated
for all of the calculations that were made.

In these calculations, approximately 1 to 1.3 input cards
were required per collision, i.e., 0.03 to 0.05 seconds per
collision were used for reading cards. This compares with
approximately 1.3 to 2.0 seconds per collision required for
the calculations. Calculation of the random input datavin—
ternally would have required an estimated 0.4 to 0.6 addi-
tional seconds per collision.

Five random numbers may be required in the calculation of
a given collision (these will be discussed later). The twénty
random digits that were used from each card were employed as
follows in supplying these five numbers.

Rgp = columns 49-54
R, = columns 45-54
R, = columns 55-64
Ry = columns 60-64
R, = columns 59-64 + columns 51-54
With this assignmént of the random digits, multiple use

of a random digit in a given collision is kept to a minimum

and rarely occurs.
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THE PROGRAM |

The program that was used in this project was written in
fixed point basic machine language and was optimized through-
out. The flow sheets describing the program are given in
Figures 2 to 7. These will be described in order.

Figure 2 - Initialization.

The parameters that define the specific problem to be
;ruh are punched into three cards (identified by a 12 punch in
‘column 3).

Card 1.

Columns 1-10: t] & XXX, XXXXXXX Cm
Columns 11-20: t, = XXX.XXXXXXX Cm
Columns 21-30: T3 T XXX.XXXXXXX Cm
Columns 31-40: t,; = XXX.XXXXXXX Cm
Columns 41-50: t5 = XXX, XXXXXXX Cm
Columns 51-60: t_ = xXXX.XXXXXXX Cm
Columns 61-70: X, = XXX.XXXXXXX CH;
Columns 71-80: cOS B, = XX.XXXXXXXX
Card 2.
Columns 1-10: Ty = £ = XXX XXXXXXX Cm
Columns 11-20: t3 = ty = XXX.XXXXXXX cm
Columns 21-30: t4 - t3 = XXX.XXXXXXX Cm
Columns 31-40: t,. - t, = XXX.XXXXXXX Cm

5

Columns 41-50: t6 = t5 = XXX . XXXXXXX cm

Columns 51-60:

=
I

XX XZXXXXXKXK
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Columns 61-70: WR = XX XXXXXKXX

Columns 71-80: sin O, = +KXXXXKXXXX
Card 3.
Columns 1-10: Eg = X.XXXXXXXXX Mev
Columns 11-20: ET = X, XXXXXAXXX Mev
Fe
Columns 21-30: ET = ¥, XXXXXXKXX Mev
H
Columns 31-40: ETO = X, XXXXXXXXX Mev

Columns 41-~45: Problem number

Columns 46-50: Number of the first history (e.g.
00001)

Columns 51-60: JE;‘= X . KXXXXXXKK Mev'?

Columns 61~80: Anything (not blank)

The program reads these cards into the machine and stores
each parameter into the appropriate locations for use by sub-
sequent parts of the program. Fcllowing the entry of the
problem parameters, the Ax; stores in which the capture de-
posits will be accumulated are cleared to zero and then, the
main program is initialized.

This is the beginning of a new history. The
starting parameters, E

©os Wy, and X, are inserted respec-

[e24
tively for E;_;, ©i.1, Wi_3, and x;_;, and the program goes to
the geometry routine at @

The description of the remainder of the program, with the

exception of the routines for punching out history termina-

tions and the final answers, refers to a general collision, i,
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at any stage in the generation of a neutron history.
Figure 3 - Geometry Routine.

@‘ A random input card is read and using the first
exponential deviate, Y;, from this card a random distance, xj,
along the slab normal is calculated from

Y; cos ei_l

The correct Z;(E;_;) for the material being traversed is ob-
tained from stored tables.

If x3 { %o, the reflection routine is entered at .

If x5 < x; < ty, X;_j is replaced by x;, and the iron
collision routine is entered at .

If x5 > ty the neutron enters the first water layer and
X5 1 is replaced by t;. A new xj is now calculated using the
second exponential deviate from the random input card. This
X; is then compared with t; and t, to determine whether the
neutron suffers a collision with water (t; < x; < t5),
enters the first iron layer (x; < t;}, or enters the second
iron layer (xi > ty) . The history is continued by means of
the appropriate routine, depending upon which of these condi-
tions holds, with x,;_; replaced by xj, t;, or tp respectively
in the three instances,

This process is continued as described earlier and as

shown in Figure 3 until a collision, a reflection, or a trans-

mission takes place., The third random exponential deviate on
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each card is used to calculate distances in the second iron
layer, the fourth exponential deviate is used for the second

water layver, and so on for the six slabs.

Figure 4 - Iron Collision Routine.

A number Z that is random on (-1, 1) is calcu-
lated using R,, and the nuclear species register is set to 8
designating iron.

‘If E; 1 is larger than the upper energy limit, ETFe’
(normally taken as 1 ev) of the thermal energy region for iron,

the nonsurvival or capture probability, Séigi:ll‘, is obtained

op(E;.1)
from stored tables. In the thermal region, ca(Ei_l) is as~
sumed to vary as 1/ «E;_; from a value of 2.5 barns at 0.025
ev (2200 m/sec) (15). The capture probability in this in-
stance is calculated from

05 (E;_1) K

Op(B;_ 1) op(By_(WEi_1

where K is a constant determined by the 2200 m/sec absorption
cross section, and GT(Ei_l) is taken from the stored tables.
The capture weight, pj, to be deposited is calculated and
added to the correct Ax; store as specified by x;_j. Wi-l is
then replaced by Wi_l-pi.
If the new W;_j; is larger than Wy the history is con-
tinued; otherwise, Russian Roulette is played using Rgq. The

constant probability Russian Roulette technique shown in Fig-

ure 4 is the variation that was used most frequently in the
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calculations. Histories that are terminated by the Russian
Roulette routine enter the termination routine at(é).

If Russian Roulette is not played or if the neutron sur-
vives the play, the cosine of the scattering angle in the
center-of-mass system of coordinates is determined by a rou-
tine that depends upon the incident energy of the neutron.

If Ej_3 is in the thermal energy region for iron, the
thermal collision routine is entered at(:§ .

For By, C Ej; < Eisopg’ (Appendix L) the scattering

*
will be isotropic in the center-of-mass system and cos V¥; is
set equal to Z directly. For Ej_j >>Eis°Fe’ cos Y¥;* must be
picked from the proper probability distribution (Appendix F).

The number of terms in the differential elastic scat-
tering cross section expansion will vary, depending upon the
value of Ej_j (Appendix L). For E;_; < BITogs p(zZ)=

3 n 8 n
.ggéAnx , while for Ej_j >jEIIFe’ p(z) = :i A x".

n=0
If By 1 >'EIIFe’ inelastic scattering is possible. The
L . Oin(Ej1)
probability of iron inelastic scatter, ToEy ¢ is obtained
O'T (Ei-l
from the stored tables and compared with R,. If Rg > f§£l,
o]

elastic scatter is specified. If Rg <:.gi2 an inelastic
. oT

scattering collision is specified. 1Inelastic scattering is

assumed to be isotropic in the center-of-mass system (11) so

that cos Wi* is set equal to Z directly for inelastic scat-
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tering events,

If anisotropic elastic scattering occurs (Ejisope CEji-1
4 EIlpe ©F Ro > -g;—’l) , the cosine of the scattering angie is
picked from the appropriate distribution, p(Z), by a rejection
technique as described in Appendix J and as shown in Figure 4.

After cos wi* has been selected, the outgoing energy of
an elastically scattered neutron is calculated from (Appendix
c),

E; = E;j.1(0.98241923 + 0.017738077 cos ¥;*
+ 0.000160135 cos2y;*)2

For an inelastically scattered neutron, the energy change

is determined by
Ei=Ej1 - By

where EY is picked from one of six probability tables as out=-
lined in an earlier section (straightforward model). Ry is
used to pick a value of EY from the proper table. The table
to be used is determined by E;.; (Appendix K).

The new energy, E;, then replaces E after which the

i=1°
angle between the new velocity of the neutron and the slab
normal is calculated from (Appendix E);

cos ©; = sin Y5 sin ©j_7 cos @i + cos Y; cos ©;._3

where cos @; is a cosine of a random angle, taken from the

random input data, and (Appendix D),

1+ acos y;*

cos Y3 =

V1 4+ a2 + 2a cos ¥y ¥
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a = %.= nuclear mass/neutron mass
Cos ©5.1 is then replaced by cos ©;, a new random data
card is read, and the geometry routine is entered again to
continue the history. The geometry routine is re-entered at

@ s @ P @ P @ P s OXr @ s depending upon X;_;, as shown

in Figure 4.

Figure 5 -~ Water Collision,

@E) A number, Z, is picked at random from the interval

(-1, 1) using Ry, as for an iron collision.

‘ 0o
The probability, S , that the collision is with an
H,0
2

oxXygen nucleus is found frcom the stored tables and compared

with Rg in order to establish the nuclear species involved in

o
the water collision. If Ry < = ©_ | the collision is con-
H5O

sidered to be with oxygen; otherwise, the collision is assumed
to be with a proton. The nuclear species register is set to
89 for a hydrogen collision and to 899 for an oxygen collision.

For oxygen collisions, only elastic scattering is possi-
ble at energies used in this study. Consequently, the iron
collision routine is entered immediately at @ .

When the nucleus involved in the event is a proton, the
capture probability is found from stored tables if the inci-
dent energy is above the hydrogen thermal region, or, is cal-

culated from Eé.g — X ___ if Ej_7 is less than Egp . (normally
;| Oy N Ej_1 H
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taken as 2 ev). The constant, K, is determined by the 2200
m/sec absorption cross section as described earlier and Oy is
obﬁained from stored tables. The capture cross section for
hydrogen was taken to be 0.33 barns at 2200 m/sec (15). After
the capture probability has been determined, the iron colli-
sion routine is entered at(ZD .

The capture deposit, if one is to be made, is made via
the iron collision routine, and on the basis of the contents
of the nuclear species register, an exit is made to(:D for
hydrogen or to @ for oxygen.

(:9 If B;_; < By, the thermal collision routine is
.. entered at(:p to determine the outgoing energy and the angle
with the slab normal made by the outgoing neutron's velocity.

If By_1 >'ETH, cos ¥;* is set equal to Z (isotropic scat-
tering angle in the center-of-mass system), and the new energy
and scattering angle in the laboratory system of coordinates

are determined by

1L+a%+2 ¥
E; = Ej_1 + + 2a cos wl

(L + a)

*
1 .
cos 'Wl = + a cos 1[/1- = "jl + Cos ’l[/l* = "[Rz

N1 + aZ + 2a cos Yi*

where

a-= 21

3=

The iron collision routine is then entered at(:> in order
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to calculate cos &; and to continue the history.

(:9 For oxygen collisions that occur with E,; ; in the
oxygen thermal energy region the thermal collision routine is
entered at<:§ in order to establish the new energy and direc-
tion of travel.

oxygen collisions in which Bj 1 >‘ETO (normally taken to
be 2 ev) are elastic collisions and cos wi* must be picked
from the proper distribution depending upon Ej_ 1, a@s was the
case for iroﬁ collisions.,

The distribution of the cosine of the center-of-mass

scattering angle is given by, p(2) = :%:Anxn for Ejso, <
n=0

5
E;p < EIIO and by p(2) = ézg a x" for E;_; >:EIIO (Appendix

L). For Ej_; { E the scattering is isotropic in the

S0 9
iso,
center-of-mass system and cos wi* is set equal to Z.

In oxygen scattering events for which Ei-l >E cos

isoo’
* .
¥; 1is picked from the proper distribution by a rejection

technique as described in Appendix I and as shown in Figure 5.

The new energy and cos ¥; are calculated from

_ 1+ a2 + 2a cos ¥;*
Ei = Ei_l 1

(1 + a)2

1+ a cos ¥;*
cos Y4 = * Vi

]

1 + a? + 2a cos ¥y ¥

)
il
2=

= nuclear mass/neutron mass
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The iron collision routine is then entered at(:) to cal-

culate cos ©; and to continue the history.
Figure 6 - Thermal Energy Collisions.

When the velocity of a neutron in a history is reduced to
a value that is of the same order of magnitude as the thermal
velocity of the atoms of the material through which the neu-
tron is passing, complications enter the treatment of a neu-
tron-nucleus collision that are not present at higher neutron
energies,

First, the velocity of the bombarded nucleus due to its
thermal motion is no longer small compared to the velocity of
the incident neutron, i.e., the nucleus can no longer be as-
sumed to be at rest as was done at higher energies (Appendix
B) .

In addition, the energies of the chemical bonds between
the nucleus and its neighbors becomes significant compared to
the neutron's energy. The nucleus is no longer effectively
unbound as far as the incident neutron is concerned and in-
elastic reactions between the neutron and these bonds become
relatively important (16).

Due to these factors, the methods and equations that were
described earlier cannot be used to establish the changes in
energy and direction of travel for a neutron suffering a col-
lision at low (or thermal) energies.

In such collisions, a method presented by J. R. Triplett
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et al. (l4a) was used. The details of this method are pre-
sented in Appendices G and H. Let us now refer again to
Figure 6.

The quantities 0.0012897 NT/M and a = M/m are cal-
culated for iron where T = the temperature of the medium in °K
M = the mass of iron in amu and m = the neutron mass in amu.

@ The values of 0.0012897 m and M/m are calculat-
ed for hydrogen.

@ The values of 0.0012897 '\/—"i‘—/_l\-d. and M/m are calculat-
ed for oxygen. |

The magnitude of the scattered neutron's velocity is then
calculated as is the angle that this velocity makes with the
sladb normal. The equations used for these calculations were
presented earlier in the sectibon on the straightforward model,
and, as mentioned, are described in detail in the Appendices.
The steps involved are outlined in Figure 6.

After the new energy and angle with the slab normal have
been established, the iron collision routine is entered at

to continue the history.
Figure 7 - Termination Routine.

The termination routine is entered at where a 4
identifies a reflection, at @ where a 5 identifies a trans-
mission, or at @ where a 6 is used to identify a Russian

Roulette termination.

Following the adjustment of the store identifying the



type of termination, the values of By 7, Wij_35 ¥i.1, and the
contents of the termination identification store are punched
out on a standard IBM card. The history termination card con-
tains the following:

Columns 1-5: Problem Number

Columns 6-10: History Number

Columns 11-20: Type of Termination

Columns 21-30: Co0S ©;.] = XX.XXXXXXXX

Columns 31-40: E;_j = X XXXXXXXXX Mev

Columns 41-50: W;_j = XX, XXXXXXXX

Columns 51-60: Xj.] = XXX, XXXXXXX Cm

Columns 61-80: Meaningless

After this punch-out, the history number is increased by
1 and is compared with N, where N is the total number of his-
tories to be calculated. If the history number is less than
or equal to N, a new history is begun at(:§ in Figure 2. If
the total number of histories that have been calculated is
equal to N, the contents of the capture stores (Axj stores)
are punched out and the problem stops.

The capture store punch-out is in the following form:

Columns 1-5: Problem Number

Columns 6-10: N + 1

Columns 11-80: 7 ten-digit words in the following form,

rrrsssssss, where rrr = serial number of

the store (001 to n) and sssssss = the
contents of the store in the decimal form

XX JKXEXKX



60

OPTIONAL ROUTINES

Isotropic Monoenergetic Source

An isotropic monoenergetic source was supplied by setting
cos 89 = 2Ry - 1. The flow sheet for this optional routine is

shown in Figure 8.

Monoenergetic Cosine Source

The intensity of the radiation at the surface of a large
volume source of nuclear radiation is often approximately
proportional to the cosine of the angle at which the radiation
emerges from the surface (17). This is rigorously true if the
strength of the source is uniform throughout the volume of the
source and if the attenuation of the radiation in the material
of the source is exponential in character.

Such a cosine surface source was used in most of the cal-
culations for this study.

The probability distribution function of the emergent

angle for a cosine source is given by

p(e)dL= °‘%-cos © d)= -2 sin © cos & de

= 2 cos © dcos © = g(cos ©)dcos ©

(0 < cos e (_l)
where p(e) is the probability'per unit.solid angle of emission
at an angle €, d{)L is an increment of solid angle, and g(cos 6)
is the corresponding probability distribution for the coSine

of the emergent angle,



FROM oN READ RANDOM 2Ro— {—= H @ GEOMETRY
INITIALIZAT! ‘_. . _.‘
ROUTINE INPUT CARD cos 8, | ROUTINE

Figure 8. Isotropic monoenergetic source

ROUTINE

FROM READ RANDOM VR, — @ GEOMETRY
N OUTIE. - | INPUT CARD COS 8- ROUTINE

" Figure 9. Monoenerdgetic cosine source

9
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To pick a random sample from this distribution, we trans-

form to the uniform distribution, g(y), as described earlier.

g(y) Lforo vy {1

= (0 elsewhere
Application of the "Golden Rule" gives

cos ©

Q(cos ©) = P(cos e { cos ©) =\/‘ q(cos ©')dcos &' =
0
2 y Y ,
cos“e = p(y* < Y)=f g(y*)dy" =f dy' =y =
-0 : 0

G(y) =R

where R is a number selected at random from the interval
(0, 1). R constitutes a random sample from G(y) and from
Q(cos ©)., Thus, we set

cos?e = R
or

cos & =NR

The routine in Figure 9 was used to generate a monoener-

getic cosine source.

Isotropic Thermal Source

An isotropic thermal neutron source was generated by
selecting Eo from the Maxwell-Boltzmann distribution of neu-
tron energies (18) and by setting cos 6, edual to 2Ry = 1.

The Maxwell-Boltzmann energy distribution is given by
E)dE = _2In E? GE
n(E) (TkgT) 372 ©
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where n = total number of neutrons/cm3 and n(E)dE = neutrons/
cm3 with energy in 4dE at E.

The energy range from O to 10 electron volts was divided
into 48 intervals as shown in Table 1 and the cumulative Max-
well-Boltzmann distribution, C;, was calculated for each

energy at 298°K,
E.

L
Cq =f n(E)dE
0 Ej /».Ei—l

(Note that P(E, ;) C E { Ey)=Cj - ci_l=fn(E) aE- | n(E)dE).
0 0
These cumulative probabilities are also given in Table 1,

To specify Eg, a random number, Rl’ from a random input
card was compared with the cumulative distributions given in
Table 1. The ene;gy corresponding to the first C; larger than
or equal to R was taken to be E, . (This is the same method
used to select interaction types as described in the section
on the straightforward model,)

The flow sheet for the isotropic thermal neutron source

routine is shown in Figure 10.

Uniform First Collision Weighting

The number of neutrons that penetrate to a given distance,
X, into the array of Figure 1 from the source, becomes small
as x becomes large., The number of capture deposits at such
distances is therefore small and the variance, or statistical

uncertainty, of the results is large. There is, therefore, a
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Table 1, Cumulative Maxwell-Boltzmann energy distribution

E; (ev) Cy E; (ev) Ci

0.001 0.00500 0.105 0.95527
0.002 0.01496 0.110 0.96212
0.003 0.02746 0.115 0.96832
0.004 0.04159 0.120 0.97320
0.005 0.05707 0.125 0.9725
0.010 0.14505 0.130 0.98055
0.015 0.23886 0.135 0.98530
0.020 0.33029 0.140 0.98567
0.025 0.41573 0.145 0.98766
0.030 0.49353 0.150 0.98942
0.035 0.56315 0,155 0.99080
0.040 0.62497 0.160 0.99202
0.045 0.67911 0.165 0.99294
0.050 0.72609 0.170 0.99377
0.055 0.76669 0.175 0.99444
0.060 0.80165 0.180 0.99502
0.065 0.83177 0.185 0.99562
0.070 0.85755 0.190 0.99563
0.075 0.87937 0.200 0.99565
0.080 0.89787 - 0.250 0.99575
0.085 0.91358 0.350 0.99725
0.090 0.92689 0.500 0.99875
0.095 0.93807 . 1.000 0.99900
0.100 0.94722 10,000 - 0.99999

limit to the thicknesses that may be examined meaningfully.
One means of extending this limit is to take advantage of
the fact that the distribution of first collisions is known
exactly. This makes it possible to devote a larger fraction
of the computing time to deeply penetrating histories and to

correct the final answers accordingly. This is done at the
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FROM AD RANDOM SELECT 2Rp— GEOMETRY
INITIALIZATION  (BO}—" - - Eo FROM 7720 be(BO) O
ROUTINE INPUT  CARD TABLE USING 8
|
Figure 10. Isotropic thermal source
INlTlZRL(I)ZMATION BO READ RANDOM R, tg— X Re = tele o ZrX’
ROUTINE INPUT CARD 1t6™ 2T cos gy cosei.\,N COS 68y
— Wi

Figure 11.

Uniform first collision weighting

GEOMETRY
ROUTINE

S9
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expense of increasing the variance of the shallow penetration
results, but the net effect is a significant increase in the
limit of dimensions that may be studied.

The method proceeds as follows. Instead of allowing the
first collisions to be picked according to the exponential
atteﬁuation law (Appendix A), the first collisions are picked
uniformly throughout the array. The weight of each neutron
is then adjusted so that the average weight of neutrons having
first collisions at any distance into the assembly is un-
changed. In other words, instead of following Ne'“sz" dx neu-
trons of weight W, that suffer first collisions in dx at x

_u ZTX"

(total weight of W Ne dx), we follow Ndx/t6 neutrons with

first collisions in dx at x and let each of these have start-
ing weight Woe-f TxftG. Here, "ZTx" is the number of reiax—
ation lengths from the starting poiht to x. With this meth-
od, the number of events is approximately constant throughout
the array, but the weight of the caéture deposits is adjusted
so that the net results are, on the average, unchanged.

The flow sheet for this routine is shown in Figure 11 for

a cosine source.,
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TEST RUNS

If we ignore errors in the basic cross section data, the
only approximations in the equations and techniques presented
in the previous sections occur in the low energy or "thermal"
treatment as described in Appendices G and H.

As pointed out in Appendix H, the most important low
energy events are neutron-proton collisions. The relatively
low frequency of thermal neutron-oxygen collisions and the
usually small energy changes accompanying thermal neutron-
iron collisions cause the approximations made in the treatment
of these events to be of relatively minor importance. Energy
changes accompanying neutron-proton collisions are, on the
other hand, dquite important. Since the capture cross sections
are inversely proportional to the sduare root of the neutron
energy, the capture distributions are sensitive to the thermal
neutron energy spectrum and, hence, to approximations made in
the treatment of thermal neutron-proton collisions.

For this reason it was considered essential, before pro-
ceeding to the main calculations, to make a check of the
thermal neutron energy spectrum and capture distribution
produced by the program for water.

In an early version of the final program a cut-off weight,
We, was used to terminate neutron histories. This version of
the program also punched out the values of the state variables

(Bi-1, X;.1s COS ©i_71, W;i..1) for each collision. This program
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made it possible to generate by fixing W, at zero, an inter-
minable neutron history, with the state variables for each
collision being punched out on cards,

Such a history in water (with the thicknesses of the iron
slabs set to zero) reaches thermal equilibrium after 10 to 40
collisions. By counting the number of collisions (after
equilibrium is reached) that occur in each of several speci-
fied energy intervals, an energy spectrum for the collisions
can be obtained. This energy distribution for thermal neutron
collisions constitutes a sample of the equilibrium thermal
neutron energy.spectrum produced by the program for water. If
the number of events is large, the sample should give a good
measure of this spectrum.

It should be noted that all of the collisions in the
above fredquency count are given equal weight. This is tanta-
mount to assuming that the capture cross section of water is
zero, since there is no weight reduction from collision to
collision; i.e., there is no capture. The thermal neutron
capture cross section of water is small however, and the ener-
gy spectrum in actual water does not differ greatly from the
Maxwellian spectrum that would exist in water with zero cap-
ture cross section (19), (20). The Maxwellian energy distri-

bution is given by
~E/k_T
n(E)de = -2m e P g
('ﬂ'kBT) 3/2

l/2dE
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This distribution was described earlier in the section on

optional routines.

A series of spectrum runs, as just described, was cal-

culated using different schemes of effective proton mass Vs

neutron ehergy in each run. These runs consisted of 3000 to

5000 collisions each. Comparison of the resulting spectra

with the Maxwellian distribution was used as a basis for

choosing the effective proton mass scheme to be used in the

program. The mass schemes tested are given in Table 2. These
. mable 2. Effective proton masses (in amu) vs incident neutron
energy

I II IIT v

Reference  Empirical Triplett et al. (Described

E(ev) (20) scheme (22) in text)
10.0 1.9 1.0 1.0 1.0
1.0 " 1.9 1.0 1.4
0.1 " 1.9 1.25 2.0
0.074 " 1.9 1,55 2.8
0.049 " 5.0 1.98 3.6
0.035 " 5.0 2.40 4,6
0.028 " 5.0 2.65 5.0
0.025 " 5.0 2.90 5.6
0.021 " 10.0 3.10 6.0
0.019 " 10.0 3.40 6.6
0.017 " 10.0 3.54 7.6
0.014 " 10.0 3.92 9.0
0.012 " 18.0 4,42 10.0

0.009 " 18.0 5.0 13,

0.007 " 18.0 6.3 13.8
0.005 " 18.0 7.7 23.0
0.003 " 18.0 10.0 32.9
0.001 " 18.0 15.05 65.0
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masses were oktained from the following sources:
I. Brown, H. Dean. Neutron energy spectra in
water (20).

II. An empirical scheme of masses devised to in-
crease with decreasing neutron enetgy from 1.9
amu at 1 ev (20) to 18 amu at 0.001 ev (21).

III. Triplett, J. R., et al. (22). These masses

| were based upon reference (23). A graph of
these effective proton masses vs neutron
energy is given in Appendix H;

IV. These empirical masses are roughly 2A - 1,
where the A are the effective masses from
reference (23), modified somewhat at lower neu-
tron energies.

The spectra from these runs are compared with the Max-
wellian spectrum in Figures 12 and 13, In Figures 12 to 14
p(E) is the probability per unit energy that a neutron will
have energy in dE at E, i.e., p(E) = n(E)/n. As can be seen
from the figures, only the empirical proton masses of scheme
number IV lead to a Maxwellian neutron spectrum for water.

In order to check the masses of IV at temperatures other
than 298°K, a spectrum run was made with the masses of IV and
a temperature of 375.5°K. The thermal neutron spectrum from
this run is compared with the Maxwellian spectrum in Figure

14, The agreement with the Maxwellian curve in Figure 14 is
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Figure 12. Monte Carlo produced thermal neutron spectra in
. water for various effective proton mass schemes
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Figure 13. Monte Carlo produced thermal neutron spectrum in
watgr for effective proton mass scheme #IV at
298°K
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Figure 14, Monte Carlo produced thermal neutron spectrum in

water for effective proton mass scheme #IV at
375.5°K
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poorer than that in Figure 13, However, the two curves in
Figure 14 have the same shape, and the slight shift of the
Monte Carlo curve could be corrected by a few relatively small
empirical changes in the effective mass scheme,

Since temperature effects were not included in this
study, it was decided to use effective mass scheme number IV
and to make the remainder of the calculations at a temperature
of 298°K.

A final test of the low energy routine and of the ef-
fective proton mass scheme IV was made by generating an iso-
tropic thermal neutron source, as described earlier, at one
surface of a large water layer (iron thicknesses set to zero).
A total of 200 histories was generated in about 10 hours.

Points on the capture distribution curve were then calculated

from
P(x) = the probability of capture per unit distance per
incident neutron = P(x)/AxN
where
P(x) = the weight deposited in Ax at x by the calculation
X = the mid-point of Ax
N = the total number of histories in the calculation

The capture distribution for this problem should be given
adequately by simple diffusion theory (9) (see the earlier sec~-

tion on neutron transport). Diffusion theory gives
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L e -0.3937 x
p(x) = Z8(x) = 25 535 = 0.1969 e
where
@ (x) = the thermal neutron scalar flux per unit source

S5 = the macroscopic cross section for capture of

thermal neutrons in water = 0.02201 cm—t (8)

D = the thermal neutron diffusion coefficient for
water = 0.142 cm (8)
2 _
K = Za D

The Monte Carlo data points were fitted by the function
p(x) = A e® ¥, as described in Appendix N, with the following
result, |
p(x) = 0.1762 o 03920 %
This curve and the Monte Carlo data are compared with the dif-
fusion theory capture distribution in Figure 15. The Monte
Carlo curve agrees with the theoretical curve even more close-
ly than might be expected from the small number of histories
that was generated,

An albedo, or‘fraction of incident neufrons that were re-
flected, was calculated from the Monte Carlo results. The
Monte Carlo albedo was 0.823, compared with the experimental
thermal neutron albedo for water (9) of 0.821.

An attempt was made to find some theoretical or experi-

mental results that might be used to check the high energy

portion of the Monte Carlo program. This search was not
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successful. As pointed out earlier, such a problem is not
amenable to solution with the usual mathematical methods. It
appears also that no directly comparable experimental results
are available. Therefore, the high energy portion of the
program was not checked with a test problem. It would be ex-
pected, however, that results produced by this portion of the
program would be as reliable as the cross section data that

- were used in the program.
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PRELIMINARY RUNS

Several preliminary problems were run in order to estab-
lish the problem parameters (slab geometry, angle of incidence,
incident eneréy) that were most important. These runs also
served to define the ranges of problem parameters that were
practical for study with the program.

The principle limitations of the program were in the slab
thicknesses and the source energies that could be used. The
upper limit for the source energy was 4.65 Mev. This limit
was imposed by the lack of storage space for the cross section
data necessary for additional energy groups (Appendix L). Be-
cause of the relatively short mean free path of thermal neu-
trons in water and the low neutron capture cross section in
water, the running time per problem was vefy sensitive to the
thicknesses of the water layers. One attempt was made to run
a problem in which the water layers were two inches thick.
This problem was abandoned after 2.5 hours with only 60 his-
tories completed, All subsedquent problems used water thick-~
nesses of one inch or less. This (1") appeared to be an ap-
proximate upper limit for the thickness of water fhat could be
studied, Some typical running times will be given later and
it will be seen that the dimensions of the iron layers are
much less important in determining the computing time re-
quired for a given problem,

The Monte Carlo capture curves that will be presented in
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the remainder of this paper were obtained from the following
curve fits (Appendix N):
Water layers: p(x) = A + Bx + cx?
First iron layer: p(x) = aePX
Other iron layers: p(x) = dcosh B(x~-x,)

In fitting all of the curves, the origin of the x axis
was taken as the\left face of the particular slab being con-
sidered. This was done for convenience in both the curve fit-
ting calculations and in ﬁhe subsequent presentation of the
correlations for the curve parameters. Transformation to
another coordinate system, [p(x'), x'], is accomplished easily
by substituting x = x' - xg into the original equation, where
xg is the disPlaéement of the left face of the slab in the new
coofdinate system.

As pointed out earlier, p(x) is the probability of cap-
 ture per unit distance per incident neutron, and the data
points for the curve fits were obtained from

p(x) = P(x)/BxN
where B(x) are the "observed" points to be fitted, P(x) is the
weight deposited in Ax at x by the calculations, x is the mid-

point of Ax and N is the total number of histories in the run.

The first problem that was calculated was:

tl =1 t2 = 2" t3 = 3"
ty = 4" tg = 7 tg = 10"
E, = 1 Mev 9 = 0° Xo = 0
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Ax = 0.1" T = 298°K
The resulting fitted capture curves are presented in Figure
16. This problem consisted of 400 histories and required 11
hours of computing time.

An attempt was made to estimate the variance of the
curves in Figure 16 by dividing the data into four groups of
100 histories each and fitting curves to each of these groups
of histories. The resulting four curves in each layer con-
stituted four independent estimates of the final curve so that
a variance for each curve could be calculated in the usual
manner,

2 4 2 )

s (x) = ;Z: [p; (x) - p(x)]/3 = the variance of the curve
= at x

The p; (%) are the four independent estimates of the
capture probability at x, and p(x) is obtained from the fitted
400~history curve. The resulting coefficients of variation,
where the coefficient of variation is defined as the standard
deviation at x divided by p(x), were between 1l0% and 35%.

This method of estimating the statistical uncertainty of
the results was not satisfactory. The small number of degrees
of freedom, i.e., the small number of independentiestimates of
each curve meant that the variance estimates were inaccurate.
In addition the curve fitting was very time-consuming. The

éomputing time required with this procedure is not justified
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by the quality of the results. It was decided to calculate
the statistical uncertainties only for the data points, B(x),
in subsequent runs. The variances of the fitted curves are
smaller than the variances of the P(x), but the magnitude of
this improvement is very difficult to determine. This point
will be discussed further in‘a later section.

vThe most uncertain points in the curves of Figure 16 are
the surface points in the second iron layer., This also ap-
peared to be characteristic of subsequent runs, The values
of surface points in thin iron slabs in the interior of such
an array are very sensitive to statistical fluctuations in the
number of thermal neutrons diffusing into the iron from the
adjacent water layers. Some improvement in the determination
of these points can be accomplished through the use of the
statistically more accurate water capture data at the slab
boundarigs, as will be pointed out later. However, at present
suffice it to say that the estimafed capture rates at the
interior iron surfaces in Figures 16 to 21 may be in error by
20 to 40%. Comparisons at these points of the results of
other runs with the results in Figure 16 should be made with
this fact in mind.

The data in the interior of a thicker iron slab such as
the third iron layer in Figure 16 influence the end points of
the capture curve to a greater extent than do the data ih the

interior of thinner layers. Thus, the end points of the curve
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| in the third iron layer in Figure 16 are more accurately de-
fined than those for the curve in the second iron layer.

The second problem that was run was identical to the
problem just described with the exception that the water was
poisoned with 2.0 w/o boric acid. Running time for 400 his-
tories in this problem was 7 hours. The resulting capture
distributions are compared with the results of the unpoisoned
run in Figure 17, Capture rates were reduced in the iron
layers and incfeased in the water layers as expected. The
usefulness of data on poisoned water systems did not appear
to be such that further poisoned water runs were merited in
this study; therefore, this was the only such problem that was
run, The primary reason for including a description of this
run is to point out the reduced running time required for
poisoned problems. The water thickness limitation is re-
laxed somewhat for such problems.

Neutron scattering in the laboratoiy system of coordi-
nates is anisotropic for iron and oxygen at higher energies
and for hydrogen at all energies, It would be expected,
therefore, that the capture distribution through an array of
iron and water slabs from neutrons impinging upon one surface
of the array would be dependent upon the angle of incidence of
the source neutrons, i.e., upon the angular spectrum of the
source,

A series of runs was calculated with which to examine
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this dependence. The following basic problem was run with

three different source angular spectra.

tl P ;ill t2 = 1 't3 = l;in
ty = tg = tg = 2" Eo = 1 Mev Xo =0
Ax = 0.1" T = 298°K

The three source angular spectra were: a normally incident
source (6o = 0), an isotropic source, and a cosine source.
Running times for these problems were 6 to 9 hours for 2000 to
3000 histories. The resulting capture curves are compared in
Figure 18. A small decrease is evident in the distribution’
resulting from the normally incident source as compared with
the distributions from the other twb sources. The curves are
the same for the isotropic and the cosine sources within
statistical uncertainties., Coefficients of variation of the
data points in these runs are given in Table 3.

A final run in this series was made using the parameters
of the first problem that was described in this section
(Figure 16) and a cosine source. This calculation also em-
ployed the uniform first-weighting technique described in the
section on optional routines. Running time in this problem
was 12,7 hours for 400 histories. The resulting capture
curves are compared with the results for the normally incident
source (Figure 16) in Figure 19, The cosine source resulted
in larger capture rates in the first three layers than the

normally incident source. This increase, although larger than
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Table 3. Coefficients of variation of data points from the
source angular spectrum runs in the %" geometry
X = 0 at the left face of the array

normally
incident cosine isotropic
x(in.) source source source
0.05 0.243 0.120 0.251
0.15 0.252 0.228 0.151
Fe 0.25 0.227 0.180 0.182
0.35 0.222 0.184 0.145
0.45 0.216 0.228 0.120
0.55 0.181 0.118 0.102
0.65 0.185 0.099 0.072
H,0 0.75 0.179 0.083 0.102
0.85 0.177 0.1l16 0.105
0.95 0.164 0.071 0.092
1,05 0.172 0.051 0.109
1.15 0.168 0.182 0.121
Fe 1.25 0.192 0.066 0.141
1.35 0.153 0.136 0.126
1.45 0.187 0.128 0.266
1.55 0.195 0.141 0.119
1.65 0.178 0.177 0.086
H50 1.75 0.259 0.123
1.85 , 0.319 0.141
1,95 0.304 0.128

.the increase in the smaller geometry, was considerably smaller
than the changes in the capture rates that resulted from
changing tﬂe geometry., This latter effect}éan be seen by com-
paring Figures 18 and 19,

It should be pointed out that the fractions of neutrons
that are reflected and transmitted are more sensitive +to
changes in the source angular spectrum than are the capture

distributions. The normally incident, cosine, and isotropic
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sources in the problems of Figure 18 resulted in reflection

fractions of 0.209, 0.353, and 0.442 respectively, while the
transmission fractions for these three problems were 0.743,

0.602, and 0.514 respectively.

Most sources encountered in actual reactor applications
will approximate cosine or isotropic sources much more close-
l& than normally incident sources., Therefore, on the basis
of the results just described, it was decided to ﬁse cosine
sources in the remainder of the calculations. The results
should apply quite well to problems with isotropic sources and
reasonably well to thin slabs with normally incident sources.

The final series of preliminary runs was designed to ex-
amine the effect of reducing the number of layers in the
- array. A repeat of the first problem (Figure 16) was run in
which the thicknesses of the third water layer and the third
iron layer were set to zero. The capture distributions in the
remaining layers are compared in Figure 20 with the results
in the corresponding layers for the first problem. Figure 21
shows a similar comparison between the results from a 1 Mev
cosine source using six %" layers and results from the same
problem with the thicknesses of the last iron and the last
water layers set to zero (this latter problem is the same
problem for which results were presented in Figure 18).,

The small effect upon the capture rates of removing the

last two layers of the larger geometry as contrasted with the
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large effect of removing the last two layers of the %"
geometry can be explained as follows: In the first instance,
the last two layers are separated from the first four layers
by a layer of water that is large (1") compared with the
thermal neutron mean free path (O.l"‘to 0.2"). Thus, inter-
action between the last two layers and the first three layers
is relatively small for this geometry. On the other hand,
interaction in the smaller geometry between the last two
layers and the first three layers through the intermediate %"
water layer is significant. Thus, when the last two layers
are removed from the smallei array, many of the neutrons that
otherwise would diffuse back to the first three layers from
the last two layers are lost by transmission. Reduced capture
rates in the first three layers result,

The results of these preliminary runs were used as a
guide in outlining the principle problems that were run., Be-
cause of the large variation with energy of the neutron mean
free path in the materials, it was recognized from the in-
ception of this project that the capture distributions would
be sensitive to changes in the energy of the source neutrons.
In addition, the geometry, i.e., the number and sizes of the
1ayers, also was expected to be important in determining the
capture rates throughout the array. This last point was sub-
stantiated in the preliminary runs. Finally, the source

- angular spectrum would be expected to affect the capture
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distributions. The preliminary runs indicated that this lat-
ter factor is considerably less significant than the first
two (source energy and geometry).

On the basis of these considerations it was decided to
concentrate in the remainder of this study upon the effect of
the source energy. The geometry effect does not lend itself
as readily to examination as does the effect‘of varying the
source energy. This is particularly true in view of the
limitations of the IBM-650 and of the program that was used in
this work. Since the scope of this project dia not admit the
comprehensive examination of both source energy effects and
geometry effects, a compromise was made in favor of the
energy effects by examining in some detail the effeét of
source energy upon the capture distributions‘for two different
geometries. The results of these calculations are presented

in the following sections.
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PRINCIPLE RUNS

In the principle calculations made in this study, the
dependence of the capture distribution upon source energy was
examined. Monoenergetic cosine sources of varying energiés
were used with two different geometries. These geomefries
were: I. six % inch layers, and II. six 1 inch layers. The
temperature in all of these runs was 298°K, and the Ax spacing
was 0.1". Source energies were 4.5, 1.0, 0.1, 0.04, 0.02, and
0.01 Mev for geometry I, and 4.5, 1.0, 0.1, 0.04, 0.025; and
0.01 Mev for geometry II. Running times were between 9 hours
for 1400 histories using a 4.5 Mev source énd geometry I,and
12 hours for 400 histories using a 0.025 Mev source and
" geometry II. Longer running times were required for larger
water thicknesses’and lower source energies.,

Coefficients of variation were calculated for the data
points by dividing the total number of histories into 16 to
32 groups and using these l6l(to 32) independent estimates of
each data point to calculate the variances. Each problem was
run by calculating n groups of N histories each, n = 16 to 32,
where n times N is the total number of histories calculated
for the problem. The n groups 6f output were then sorted into
m groups of cards (n cards per group) with each group contain-
ing the same Ax's. The number m is equal to the total number
of cards required to punch out the contents of the Ax stores

at a rate of seven Ax's per card. These sorted cards were
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used as input to an analysis of variance program obtained from
the Iowa State University Statistical Laboratory. The output
of this program gave the variance of the capture rate, p(x),
in each Ax. Tables 4 and 5 show the resulting coefficients of
variation for the data points. These data points were used in
fitting the first set of capture curves that will be discussed
in the following paragraphs.

After the program output‘cards had been used to caiculate
the point variances, the total capture weight, P(x), deposited'
in each Ax interval was determined by summing the n contribu-
tions to each interval. This was done with an IBM-402 tabu-
lating machine.’

The capture probability points, p(x), were calculated from

B(x) = P(x)/Ax N,
where Ny is the total number of histories in the problem,
Capture probability curves using the functions presented
earlier, were then fitted to the B(x).

It should be pointed out that all of the data points in a
given layer are used‘to fit the capture curve at a given x;
therefore, the effective number of events used to establish a
curve at a given x is larger than the number of events used
to establish a single p(x). This reduces the variances of the
curves as compared to the variances of the data points. The
amount of this reduction is very difficult to determine, how-

ever, and consultation with members of the ISU Statistical



Table 4. Coefficients of variation for data points, p(x), in geometry I

E (mev)
x (in) 4.5 1.0 0.1 0.04 0.02 0.01
0.05 0.3845 0.2006 0.2390 0.2232 : 0.2242
0.15 0.2402 0.1794 0.1499° 0.2037 v not 0.2012
Fe 0.25 0.3000 0.2748 0.1683 0.1667 0.1759
0.35 0.3683 0.2092 0.1653 0.1422 calculated 0.1844
0.45 0.2588 0.2197 0.1366 - 0.1716 00,1755
0.55 0.1977 0.1929 0.1098 0.,1274 0.1332
0.65 0.1918 0.1291 0.1258 -0.1165 0.1072
Hy0 0.75 0.2010 0.1447 0.0904 0.1076 00,1080
0.85 0.1842 — 0.1140 0.1112 0.1315 0.1100
0.95 0.1304 0.1383 0.1202" 0.1190 0.1113
1.05 0.1599 0.1562 0.1086 0.1062 0.1258
1,15 0.1522 00,1530 ~0.1035 0.1421 0.1402
Fe 1.25 0.1298 0.1776 0.1079 0.1847 0.1105
1.35 0.1546 0.1658 0.1285 0.1168 0.1074
1.45 0.1622 0.1719 0.1307 0.1251 0.1224
1.55 0,1433 0.1578 0.0894 0.0994 0.1156
1,65 0.1446 0.1948 0.1052 0.117° 0.1312
H,0 1.75 0.1914 0.1376 0.1318 0.0923 0.1l1l6l
1.85 0.1445 0.1490 0.1201 0.0912 0.1234
1.95 0.1512 0.1770 0.1063 - 0.,1207 0.1181
2.05 0.1795 0.1933 0.1610 0.1589 0.1582
2,15 0.1754 0.1353 0.1288 0.1277 0.1675
Fe 2,25 0.1680 0.1535 0.1535 0.1593 0.1805
2,35 0.1525 0.1280 0.1555 0.1573 0.1980
2.45 0.1755 0.1648 0.1691 0.1919 0.1828
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Table 4. (Continued)
' E (mev)
x(in) 4.5 1.0 0.1 0.04 0.01
2.55 0;1720 0.l664 0.1472 0.1791 0.1787
2.65 0.1947 0.1625 0.1412 0.1710 0.1729
H,0 2.75 0.2014 0.1692 0.1453 0.1726 0.2437
2.85 0.1989 0.1878 0.1421 0.2192 0.2778
2.95 0.1980 0.2604 0.1611 . 0.2408 0.2631

L6



Table 5,

Coefficients of variation for data points, p(x), in geometry II

E (mev)
x (in) 4.5 1.0 0.1 0,04 0.025 0.01
0.05 0.3565 0.8143 0.2177 0.2337 not 0.3286
0.15 0.2905 0.3273 0.1928 0.2433 . 0.1439
0.25 0.3628 0.2670 0.2503 0.2089 calculated 0.1829
0.35 0.3250 0,1547 0.2187 0.1556 0.1751
0.45 0.1l681 0.3005 0.1675 0.1835 0.1880
Fe 0.55 0.2778 0.1719 0.2325 0.1492 0.1373
0.65 0.3174 0.1731 0.1759 0.1288 0.1385
0.75 0.2723 0.1590 0.1773 0.1210 0.1257
0.85 0.3087 0.2123 0.1875 0.1215 0.1570
0.95 0.2173 0,1425 0.1584 0.1629 0.1550
1,05 0.1829 0,1662 0.1468 0.1697 0.1058
1.15 0.1991 0.1462 0.1325 0.1421 0.1048
1.25 0.1794 0.0835 0.1214 0.1261 0.1149
1.35 0.1855 0.2217 0.0857 0.1113 0.1005
1.45 0.1624 0.1827 0.0846 0.1410 0.1145
H20 1.55 0,2313 0.1456 0.1281 0.0918 0.1305
1l.65 0.1935 0.1112 0.1172 0.0871 0.1287
1.75 0.1714 0.1444 0.1l119 - 0.0958 0.0936
1.85 0.1700 0.1514 0.1128 0.0980 0.1219
1.95 0.1501 0.1383 0.1197 0.1009 0.1055
2.05 0.1543 0.1730 0.1212 0.1065 0.1096
2.15 0.2336 0.1964 0.1418 0.1325 0.1436
2.25 0.1487 0.1575 0.1544 0.1296 0.1279
2.35 0.1695 0.2574 0.1335 0.1266 0.1433
Fe 2.45 0.1608 0.3302 0.2273 0.1144 0.1846
2.55 0.1453 0.1314 0.1542 0.1317 0.1794
2.65 0.2093 0.1435 0.1234 0.1430 0.1307
2.75 0.1409 0.1438 0.1411 0.1509

0.1452
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Table 5. (Continued)
E (mev)
x(in) 4,5 1.0 0.1 0.04 0.01
Fe 2.85 0.1325 0.1235 00,1792 0.1580 0.1384
2.95 0.2013 0.1794 0.1535 0.1543 0.1888
3.05 0.1527 0.2174 0.1622 0,.1437 0.1280
3.15 0.1677 0.2705 0.1825 0.1727 0.1750
3.25 0.1689 0.1452 0.1969 0.1572 0.1698
3.35 0.2247 0.1856 0.1596 0.1890 0.1863
HAO 3.45 0.1602 0.1626 0.1952 0.1783 0.1328
2 3.55 0.1645 0.1742 0.1778 0.1l684 0.1787
3.65 0.1745 0.1941 0.1756 0.1909 0.2252
3.75 0.2069 0.1721 0.2315 0.1668 0.1955
3.85 0.2276 0.1064 0.2060 0.1743 0.2305
3.95 0.1858 0.1497 0.2169 0.1627 0.2607
4,05 0.2037 0.1515 0.2986 0.2442 0.2446
4,15 0.1877 0.2012 0.2711 0.1892 0.3504
4,25 0.2324 0.1701 0.2855 0.2530 0.2563
4,35 0.1397 0.2009 0.2745 00,2983 0.20648
4.45 0.1332 0.1320 0.2743 0.2651 0.4077
Fe 4,55 0.1836 0.2290 0.2304 0.2864 0.3116
4,65 0.1761 0.1659 0.2870 0.2707 0.4134
4,75 0.1495 0.0967 0.2433 0.2842 0.4249
4,85 0.1473 0.2643 0.3059 0.2361 0.3243
4,95 0.2165 0.1442 0.3016 0.3642 0.318C
5,05 0.1977 0.2094 0.3252 0.4194 0.3642
H,0 5,15 0.2051 0.1692 0.3910 0.5829 0.3843
5.25 0.2119 0.2446 0.5111 0.3591 0.3943
5.35 0.2673 0.2714 0.6875 0.4275

0.4475
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Table 5  (Continued)

E (mev)
x(in) 4.5 1.0 0.1 0.04 0.01
5.45 0.3318 0.3465 0.5402 0.4732 0.6374
5.55 0.2568 0.4419 0.4325 0.4471 0.5736
HZO 5.65 0.3511 0.2983 0.3259 0.6355 0.5201
5.75 0.2478 0.4604 0.4632 00,7664 0.4511
5.85 0.2974 0.4552 0.4918 0.4863 0.7086
5.95 0.2555 0.4670 0.8854 0.4423 0.5393

00T
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Laboratory failed to produce a method of doing this with a
practical amount of computing time. It can be stated only
that the curves and cofrelations resulting from the data
processing described in this section have less statistical un-
certainty than the statistical uncertainties, as presented in
Tables 4 and 5, of the original data points.

The capture distributions are most conveniently corre-
lated as a function of the logarithm of the source energy. A
so-called "lethargy" was used in the remainder of the work,
where the lethargy of a neutron is defined by

U = lethargy = ln (E,/E)
Here, E is the energy of the neutron and Eg; is a convenient
reference energy. A reference energy of 10 Mev was used in
this work to insure that all lethargies would be positive.

Capture probability points from the first curve fits
(as a function of distance into each layer) were cross-plotted
as a function of source lethargy at constant x. This was done
for the mid-point of each Ax interval and for the surface
points of each layer. These points were then fitted as a
function of source lethargy by means of a fourth degree poly-

nomial

4 .
p(v) = > a;ut
=5

where p(U) is the capture probability per unit distance per

incident neutron (at a given x) for a source of lethargy U.
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The program used for these fits was obtained from the IBM-650
program library. Representative samples of the resulting
curves are shown in Figures 22 and 23, along with the points
that were used in the fitting calculations. The anomalous
scatter in the surface points (x = 0 and 0.5 for geometry 1
and x = 0 and 1.0 for geometry II) should be noted. These
curves will be discussed later. The smoothed lethargy curves
were used to obtain new capture probability points as a func-
tion of x. (Note that, in Figures 22 and 23, x = 0 at the
left face of each layer).

Throughout the calculations the uncertainty of the end
points of the capture distribution in a given iron layer was
of concern., The shape of the capture distribution curve in
an iron layer is sensitive to the values of the end points,
and statistical variations in the determination of some of
these points had led, in some instances, to results that were
not compatible with known qualitative features that should
have been evident in the curves. The following considerations
were used to improve the estimates of these end points, and,
as will be pointed out later, the results, using the "cor-
rected" end points, were qualitatively much superior to the
first capture curves.

It became clear early in this work that most of the cap;
ture weight in these problems was being deposited by neutrons

that had reached thermal equilibrium with the media through



Figure 22,

Geometry I--sample plots (and smoothed curves) of p(u) =
capture probability per unit distance per incident neutron,

for source of lethargy u, (at constant x = position in each
layer) vs source lethargy

Top row (left to right): First water layer, second water
layer, third water layer

Bottom row (left to right): First iron layer, second ‘iron:
layer, third iron layer
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Figure 23.

Geometry II--Sample plots (and smoothed curves) of p(u) =
capture probability per unit distance per incident neutron,
for source of lethargy u, (at constant x = position in each
layer) vs source lethargy

Top row (left to right): First water layer, second water
layer, third water layer

Bottom row (left to right):

First iron layer, second iron
layer, third iron layer
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which they were passing. One might expect that the energy
spectrum of these thermalized neutrons at iron-water inter-
faces in the array would be approximately independent of which
interface was being considered. If this constancy holds, an
effective capture cross section can be defined such that the
capture rate at any interface is given by the product of this
cross section and the flux of thermal neutrons at the inter-
face. This effective capture cross section and the ratio of
the capture rate in iron to the capture rate in water at an
interface wiil be constant to the extent that the energy
spectrum of the neutrons being captured is constant.

If this spectrum is Maxwellian and if the capture cross
sections of iron and water vary inversely as the sduare root
of the neutron energy, then the ratio, r, of the iron capture
rate to the water capture rate at an interface will be given
by (24)

r =@ (Zap)re/? (23 Hy0 = Caglre _ 9.74
(2 5,0
where Zgq, is the macroscopic thermal neutron capture cross
section (15), and ¢ is the thermal neutron flux at the inter-
face.

Tables 6 and 7 show the ratio of iron capture rate to

water capture rate at the five iron-water interfaces for

geometries I and II. These ratios were calculated from the
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Table 6. Ratio of capture rate in iron to capture rate in
water at the iron-water interfaces of geometry I

Interface E (Mev)
(Figure 1) 4.5 1.0 0.1 0.04 g.02 0.01
t1 4,9 19.6 8.3 13.1 9.0 12.6
ts 12,7 10.6 7.6 10.0 9.3 2.3
t3 9.7 9.9 8.9 8.2 7.1 6.2
t4 1007 900 801 9.0 1012 7.0
ts 5.8 9-0 7-5 7.5 7.4 905
Table 7. Ratio of capture rate in iron to capture rate in
water at the iron-water interfaces of geometry II
Interface E (Mev)
(Figure 1) 4.5 1.0 0.1 0.04 0.025 0.01
ty 8.1 5.9 9.2 7.6 8.4 6.8
ts 10.0 6.5 2.8 4.6 6.4 7.6
t3 10.2 8.5 7.8 8.4 6.8 6.4
t4 7.1 10.3 9.9 11.3 17.3 7.0
tg 7.4 12.5 10.1 7.0 6.5 8.4

original curve fits (as a function of x). A stability in this
ratio is evident. Fifty~-seven percent of the ratios lie with-
in + 20% of 9.74, and an additional 37% of the ratios lie
within 4 40% of 9.74.

It would be expected that the water capture data would
have better statistical accuracy than the iron capture data
because of the larger number of collisions that occur in water
than in iron., This is borne out in Tabies 4 and 5., In addi-
tion, the spatial variation of the capture curves is much

smaller in water layers than in iron layers. Consequently,
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the end points of capture curves in water layers are much less
sensitive to statistical fluctuations in the data than are the
end points of capture curves in iron layers. Thus, the end-
points of the capture curves in the water layers are more
accurately determined than the end-points of the capture
curves in the iron layers.,

The considerations of the last few paragraphs were used
to "correct" the end pqints of the iron capture probability
curves., The water capture probability points, P(x), that were
obtained from the data that had been smoothed as a function of
source lethargy (Figures 22 and 23) were re-fitted by p(x) =
A + Bx + Cx2. The end points from these curves were then
assumed to be 1/9.74 times the corresponding iron capture
probabilities at the interfaces, i.e., the iron capture prob-
ability at each interface was set to 9.74 times the water
4capture probability at that interface, as obtained from the
final water curve fits. Intermediate points in each iron
layer were obtained from the lethargy curves (Figures 22 and
23) . In general, there was relatively little difference be~
tween the corrected iron end-points and the end-points that
were obtained from the lethargy curves.

In a few instances (approximately 15% of all iron end-
points), the corrected end-points appeared to be somewhat un-
reasonable in comparison with the other points in the layers.

For these cases, the values of the end points were adjusted
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rather arbitrarily so as to meet the following requirements
(iron layers):

1. The end-points must be reasonable in comparison
with other points in the layer.

2. The right end-point should not have a larger value
than the left end-point for a given layer (excluding,
of course, the first iron layer).

3. The iron capture rate at x = ty should not be
greater than fhe iron capture rate at x = t3.

4. A minimum should exist in the capture curves in the
iron layers.
These qualitative features are discussed in a later section,
The adjustments just described resulted in changes of less
than 20% for 95% of the anomalous end-points. The maximum ad-
justment was 50%.

After these end-point adjustments, the capture probabili-
ty points in the iron layers were re-fitted as a function of
X, The resulting capture curve parameters were fitted by a'
fourth degree polynomiél, as a function of source lethargy.
The resulting smoothed parameters were used to calculate a
final set of capture probability curves as a function of
distance into each layér.

Figures 24 to 27 show the capture probability curves for
these problems. The circles in these figures are the original

data points, p(x), the solid curves are the first probability




Figure 24. Geometry I, water layers--Capture probability per unit distance
per incident neutron vs x = distance into the layer

Roman numerals (e.g., II-0.04) = layer number (left to right),
attached arabic numerals = source energy (Mev)

I

First water layer

IT = Second water layer

IIT

Third water layer
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Figure 25. Geometry I, iron layers--~Capture probability per unit distance
per incident neutron vs x = distance into the layer

Roman numerals (e.g., II-0.04) = layer number (left to right),
attached Arabic numerals = source energy (Mev)

-~
i

First iron layer
II = Second iron layer

IIT = Third iron layer
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Figure 26. Geometry II, water layers--Capture probability per unit distance
per incident neutron vs x = distance into the layer

Roman numerals (e.g., II-0.04) = layer number (left to right),
attached Arabic numerals = source energy (Mev)

M
il

First water layér

II = Second water layer

fl

IIT Third water layer
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Figure 27. Geometry II, iron layers~-Capture probability per unit distance
per incident neutron vs x = distance into the layer

Roman numerals (e.g., II-0,04) = layer number (left to right),
attached Arabic numerals = source energy (Mev)

I = First iron layer
IT = Second iron layer

TII

]

Third iron layer
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curves fitted to the p(x), and the dashed curves are the final
curves obtained after the processing described in this section.
The dashed curves were obtained from the final parameter cor-
relations as a function of source lethargy. In Figures 24 to
27, the Roman numerals (e.g., II-0.04) indicate the layer num-
ber (from left to right), and the Arabic numerals give the
source energy in Mev.
Figures 28 to 39 give the final parameter correlations as
a function of source lethargy. These figures'can be used to
find the parameters for the capture probability curves in
geometries I and II for any source energy between'0.01 Mev
and 4.5 Mev, where the capture probability curves are given by
Water layers: p(xX) = A + Bx + Ccx2
Pirst iron layer: p(x) = aeﬁx
Other iron layers: p(x) = a cosh B(x—xo)
Here x is in inches, x = 0 at the left face of the layer, and
p(x) is the capture probability per unit distance per incident
nentron,
The edquations for the curves in Figures 28 to 39 are as

follows:

Geometry I

First water lavyer

A = 0,020148-0,029866U+0.015275U2-0,002688913+0 ., 000159320~

B —O.ll985+0.24l69U—0.10610U2+0.019502U3-0.0012072U4

C = 0,15250~0,32869U+0.13713U2-0.024243U340.0014336U%
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Figure 28, First water layer of geometry I--parameters for
p(x) = capture probability per unit distance per
incident neutron = A+Bx+Cx2 vs U = source lethargy

= 1n(10/E.), E, = source energy (Mev), x in inches
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Figure 29. Second water layer of geometry I--parameters for
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Figure 30. Third water layer of geometry I--parameters for
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Figure 35. Second water layer of geometry II--parameters for
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Figure 36. Third water layer of geometry II--parameters for
p(x) = capture probability _per unit distance per
incident neutron = A4Bx+Cx“ vs U = source lethargy
= 1n(lO/Eo), E, = source energy (Mev), x in inches
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Figure 37, First iron layer of geometry II--parameters for
. p(x) = capture probability per unit distance per

incident neutron = aeBx vs U = source lethargy _
= 1n(lO/EO), Eo = source energy (Mev), x in inches
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Figure 38. Second iron layer of geometry II--parameters for
' p(x) = capture probability per unit distance per
incident neutron = a cosh B(x~x,) vs U = source
lethargy = 1n(10/E,), Eo = source energy (Mev),
X in inches '
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Second water layer

A = -0.010530+0.028008U~0.012967U24+0.0024755U3~0.00015046U%
B = -0.022785+0.12646U-0.075225U2+0.01816503-0.0014234U%
C = 0.10058-0.37228U+0.21745U2-0.048703U5+0.0035433u4

Third water laver

A =--0.027629+0.063275U—0.034098U2+0.0070187U3-0.OOO47649U4

0.099616~0.18496U+0.10976U%-0.023316U3+0.0015946u%

B

1]

c ~0.071129+0.086423U-0.06391902+0.014879U3-0.0010617U%

First iron laver

o = =0.0025743+0.015906U~0.0029019U2+0.00056628U3
-0.0000469220%
B = 2.2402-0.73110U+0.56472U2-0,13255U3+0.0099479U4

Second iron laver

G = 0.061470-0.050526U+0.040881U2-0.0076542U°+0.00047975u%
B = -4.7957+11.9908U~6.081202+1,1835U3~0.077532u0%
Xy = 0.57717-0.66842U+0.3562702-0.067594U3+0.0042400u%

Third iron laver

o = -0.11301+4G.27244U-0.13417U2%+0.02671503-0,0017897u%

p

%o

~0.15850+3.1550U-1. 22890240, 23327U3-0.015944u%

0.89617-0.87482U+0.43124U2~0.081658U°+0.00520450%

Geometry II

First water laver

~0.073950+0.15298U-0.070769U2+0 .012948U3~0.00081000U%

A:
B = -0,14034+0.36548U~0.19639U%+0.041289U3~0.002831304
C = 0.12391-0.32083U+0.16613U%-0.034283U3+0.00232450%
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Second water laver

-0.015493+0.O49535U—O.020809U2+O.0036375U3-O.00022621U4

A=
B = O.O42467+0.018143U+0.OO30349U2—0.0018953U3+O.OOOl42O7U4
C = 0.0023756-0.093051U+0.035072U2-0.0056974U3+0.00036269U4

Third water lavyer

A = 0.015227-0.0032838U+0.00030567U2+0.000000718U°
-0.00000127304
~0.12973+0.22296U-0.093266U2+0.014693U3-0.00079435U%

B
C = 0.12694-—0.23359U+O.099055U2-0.015767U3+0.00086027U4

First iron laver

Q@ = ~0.057682+40.13126U~0.06731102+0.013020U3-0.00083016U%
B = 2.7346-1,7004U+1,0808U%-0.21613U3+0,013336U%

Second iron laver

@ = -0.039410+0.18706U-0.089785U%+0.01798203-0,0012311y*
B = 1,451942,1269U-0.80463U2+0,11361U3-0.0054095u%
Xo = 0.45018+0.086131U-0.038467U%+0.0080942U°-0,00054379U%

Third iron laver

@ = 0.006734340.10045U0-0.,045487U2+0.007395103-0.000415590%

4.8196-4.5840U+2.5730U2-0.51818U°+0.0343780%

™
]

Xo = 0.19273+0.62853U~0,2843902+0.052977U3-0.0034318v%
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TRANSMISSION AND REFLECTION DATA

Transmission and reflection data were obtained as a by-
product of the principle runs. The paucity of events con-
tributing to many of the transmission and reflection data
means that much of this information is of questionable
gquantitative value. Furthermore, the primary interest in this
study was the determination of the capture distributions.
Therefore, the transmission and reflection data were not
proceésed extensively. These data are presented in this sec-
tion along with qualitative comments on certain features and
trends that are evident in the data.

Figures 40 and 41 show the variation of the reflection
and transmission fractions as a function of source lethargy.
The variation of the reflection fraction with source energy is
due primarily to variation in the iron total cross section.
Reflection increases slowly with energy as the iron cross.
section increases, The increasing iron cross section leads to -
an increasing fraction of collisions in the first iron layer
and, hence, to increasing reflection. The effect of the large
anti-resonance in the iron total cross section at 25 kev
(U = 6) is clearly visible in Figure 40. At source energies
near 25 kev, the first iron layer is relatively "transparent"
to the inéident neutrons. For such sources a much larger
fraction of the incident neutrons reach the water layers and

are thermalized. The probability of being reflected is small



135

—o— GEOMETRY 1
-¥-GEOMETRY II

o
|

o
©
|

o
o)
!

O
-~J
I

o
[3)
|

o
D
|

(@
(&
I

FRACTION OF INCIDENT NEUTRONS REFLECTED
(o) (®)
N »
| |

o
I

@)

o
N
ol
H
w
o
~

Figure 40. Reflection fractions in the principle runs
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for thermal neutrons so that 25 kev sources lead tc reduced
reflection fractions (and, as discussed in the next section,
to increased capture rates). A smaller, opposite effect (in-
creased reflection) is evident at about 0.04 Mev (U = 5.5).
This is the result of a positive resonance in the iron total
cross section near this energy.

The variation of the transmission fraction in Figure 41
is due to the increasing probability of a neutron's being
thermalized in the array as the source energy decreases. The
short mean free path of low energy neutrons means that they
have much less chance of being transmitted thén do higher
energy neutrons. The difference between the two curves in
Figure 41 is due primarily to the difference in the thicknes-
ses of the water layers in the two geometries.

Tables 8 to 11 give the energy spectra of the trans-
mitted and reflected neutrons. In general, the reflection
spectra exhibit a large peak representing the majority of the
reflected neutrons at, or just below, the source energy,
another much smaller peak at thermal energies, and a small
broad minimum between the two peaks. An exception to this
occurs for sources of energy near the 25 kev iron anti-reso-
nance. For such sources a large fraction of the reflected
neutrons have suffered collisions in the first water layer.
The large energy reductions accompanying these water colli~

sions cause the reflected neutron energies to be spread more
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Table 8. Energy spectrum of reflected neutrons--geometry I

Fraction of reflected neutrons in AE
Source energy E,(Mev)

AE (Mev) 4,5 1.0 0.1 0.04 0.02 0.01

0-10"% 0.029 0.071 0.107 0.087 0.157  0.127
10-6-10"5 0.015  0.035 0.060 0.050 0.077  0.052
107°-10"4 0.011  0.054 0.060  0.060  0.103  0.089
10-4-10-3 0.020  0.046 0.072  0.101  0.131  0.069
10-3-10"% 0.021  0.087 0.100 0.086  0.127  0.664
10-2-10"1 0.049 0.134 0.602 0.617  0.406 _—
10-1-1 0.248 0.573 - — - —~

1-10  0.606 - - - - -

Table 9. Energy spectrum of reflected neutrons--geometry II

Fraction of reflected neutrons in AR
Source enerqgy (Mev)

AE (Mev) 4,5 1.0 0.1 0.04 0.025 0.01

0-10"° 0.036 0.065 0.064 0.067 0.212 0.065

10-6-10=> 0.017 0.028 0.032 0.048 0.076 0.027
10-5-10"%4 0.010 0.046 0.050 0.030 0.084 0.023
10™4-1073 0.011 0.058 0,070 0.031 0.130 0.034
10-3-10"2 0.046 0.047 0.080 0.073 0.193 0.851
10-2-10"1 0,035 0,083 0,701 0.750 0.306 -

10~1-1 0.208 0.676 -— —_— — _—
1-10 0.638 _ _— _— _ _—
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Table 10. Energy spectrum of transmitted neutrons--geometry I

Fraction of transmitted neutrons in AE
Source energy (Mev)

AR (Mev) 4.5 1.0 0.1 0.04 0.02 0.01

O—lO”’6 0.031 0.085 0.262 Too few for significance
10-6-10"5 0.012 0.034 0.106 |
10-3-10"%4 0.013 0.039 0.126
1074-10"3 0.018 0.056 0.159
10-3-10"2 0,024 0.098 0.178
10-2-10-1 0.038 0.115 0.168
10-1-1 0.139 0.572 -

1-10 0.726 - _—

Table 11. Energy spectrum of transmitted neutrons--geometry

II
Fraction of transmitted neutrons in AE
Source energy (Mev)
AE{Mev) 4.5 1.0 0.1 0.04 0.025 0.01
0-10"®  0.099 Too few for significance

10-6-10"°  0.016
10-5-10"%  0.040
1074-1073 0,028
10-3-10"2  0.040
0.049
1011 0.174

1-10 0.552




140

evenly over the energy range between the source energy and
thermal energies. The data for the transmitted neutron energy
speétra were nétistatistically significant for most of the
problems., The available data indicate, as would be expected,
that the transmission energy spectra also exhibit a large peak
near the source energy and a smaller peak at thermal energies.,

Tables 12 to 15 give the angular spectra of the reflected
and transmitted neutrons in the main runs. An interesting
feature of the reflection spectra is that they show a striking
constancy as a function of source energy. Because of the
apparent insensitivity of the reflection angular spectra to
changes in the source energy, an average reflection angular
spectrum was calculated by averaging, over the six source
energies in each geometry, the fraction of reflected neutrons
in each cosine interval. The resulting reflection angular
spectrum is compared in the tables with the cosine angular
distribution. The reflection angular spectrum in these runs
approximates a cosine distribution very closely.

The transmission angular spectra shown in the tables, are
again, very poor statistically. The transmission angular
spectra appear to be somewhat more peaked in the forward di-
rection than the reflection angular spectra. This is proba;

bly due to the higher probability of transmission for those
source neutrons that are approximately normélly incident and
"to a significant forward peaking in the iron differential

scattering cross section at higher energies.



Table 12,

Angular spectrum of reflected neutrons—--geometry I

Fraction of reflected neutrons with cos ©;_; in A cos ©

Source enexrgy (Mev)

Average
for all Cosine
-A cos (8) 4.5 1.0 0.1 0.04 0.02 0.01 sources distribution
0-0.1 | 0.017 0.013 0.014 0.009 0.01l6 0.014 0.014 0.010
0.1-0,.2 0.060 0.047 0.046 0.042 0,035 0,065 0.049 0.030
0.2-0.3 0.079 0.063 0.060 0.054 0.050 0.061 0.061 0.050
0.3-0.4 0.097 0.096 (.089 0.079 0.085 0.071 0.086 0.070
0.4-0.5 0.113 0,091 0.112 | 0.105 0.074 0.067 0.094 0.090
0.5-0.6 0.110 0.103 0.133 0.120 0.090 0.114 0.112 0.110
0.6-0,7 0.115 0.132 0,106 = 0.121 0.157 0.126 0.126 0.130
0,7-0.8 0.137 0.131 0.124 0.143 0.128 0.130 0.132 0.150
0.8-0.9 0.134 0.139 0.148 0.165 0.193 0.151 0.155 0.170
c.9-1,0 0.137 0.184 0.170 0.162 0.171 0.201 0.171 0.190

9T



Table 13.

Angular spectrum of reflected neutrons--geometry IX

Fraction of reflected neutrons with cos ©i-1 in A cos ©

Source energy (Mev)

Average

for alil Cosine

-A cos (8) 4.5 1.0 0.1 0.04 0.025 0,01 sources distribution
0-0.1 0.007 0.012 0,019 0.010 0.015 0,012 0.013 0.010
0.1-0.2 0.028 0.071 0.030 0.031 0.054 0.038 0.042 0.030
0.2-0,3 0.051 0.030 0.046 0.065 0,050 0,045 0.048 0.050
0.3-0.4 0.071 0.09 0,099 0,064 0.076 0.075 0.080 0.070
0.4~-0.5 0.084 0,103 0,137 0.088 0.064 0.090 0.094 0.090
0.5-0.6 0.112 0,088 0,100 0.077 0.144 0.127 0.108 0.110
0.6-0.7 0.136 0.094 0.092 0.116 0,075 0.127 0.107 0.130
0.7-0.8 0.137 0.155 0.141 0.169 0.141 0.l1l406 0.148 0.150
0.8-0.9 0.164 0,178 0,162 0.184 0.185 0,154 0.171 0.170
0.9-1,0 0.212 0,177 0.172 0.195 0,197 0.187 0.190 0.190

(AN



Table 14,

Angular spectrum of transmitted neutrons--geometry I

 Fraction of transmitted neutrons with cos ©;_1 in A cos ©

Source energy (Mev)

Average

. for all Cosine
A cos © 4,5 1.0 0.1 0.04 0.02 0.01 sources distribution
0 -0.1 0.006 0,003 0.004 Too few for 0.004 0.010
0.1-0.2 0.015 0.015 0.019 significance 0.016 0.030
0.2-0.3 0.022 0,018 0.010 0.017 0.050
0.3-0.4 0.052 0.036 0.077 0.055 0.070
0.4-0.5 0.075 0.069 0,085 0.076 0.090
0.5-0.6 0.086 0.099 0.100 0.095 0.110
0.6-0.7 0.135 0,143 0.163 0.147 0.130
0.7-0.8 0.166 0.161 0.141 0.156 0.150
0.8-0.9 0.194 0.209 0.224 0.209 0.170
0.9-1.0 0.248 0.245 0.174 0.222 0.190

€91



Table 15,

Angular spectrum of transmitted neutrons-~-geometry II

Fraction of transmitted neutrons with cos ©;_; in A cos ©
Source energy (Mev)

Average

: for all Cosine

A cos © 4,5 1.0 0.1 0.04 0.025 0,01 sources distribution
0-0.1 0.004 Too few for significance 0.010
0.1-0.2 0.028 0.030
0.2-0.3 0.014 0.050
0.3-0.4 0.053 _ 0.070
0.4-0.5 0.065 ‘ 0.090
0.5-0.6 0.122 0.110
0.6-0.7 0.114 0.130
0.7-0.8 0.136 0.150
0.8-0.9 0.206 0.i70
0.9-1.0 0.259 ’ 0.190

1448
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DISCUSSION

Physical Features of the Capture Distributions

The attenuation of neutrons in an array of iron and water
slabs is characterized by the following physical properties:

1. At neutron energies above the thermal range, the
energy changes accompanying neutron-iron and neutron-oxygen
elastic collisions are relatively small (maximum of 5% for
iron and 25% for oxygen).

2. At all neutron energies, the average energy change in
neutron-proton collisions is large.

3. Iron inelastic scattering comprises about 40% of all
iron collisions at 5 Mev and decreases with decreasing energy
to a negligible rate at 0.85 Mev,.

4, The neutron capture rate in iron is small at higher
neutron energies and increases with decreasing neutron energy
to a rate equal to 30 to 90% of all iron collisions at thermal
neutron energies.

5. The capture cross section for water is much smaller
than that of iron at all neutron energies.

6. The iron scattering cross section (excluding reso-
nances) increases by a factor of about three between 5 Mev and
thermal energies.

7. The scattering cross sectioﬁ of water increases from
a value approximately equai to thét of ironvat 5 Mev to ap-

proximately six times that of iron at thermal ehergies.
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As a result of these properties, the attenuation and
capture of high energy neutrons in an array of iron and water
‘slabs proceeds via three steps:

1. The energy of high energy neutrons (greater than 1
Mev) is reduced to about 1 Mev by inelastic scattering in iron
and by neutron-proton collisions in water. Below this region
(1L Mev), the cross section of water becomes larger than that
of iron so that neutron-proton collisions begin to predomi-
nate.

2. The neutrons are then thermalized by elastic col-
lisions with protons in the water.

3. The thermalized neutrons then diffuse to the iron
where they are captured.

The position and energy changes of the neutrons in steps
1 and 2 are large, whereas the capture rate in these steps is
small. On the other hand, most of the capture occurs in step
3, in which the energy remains relatively constant and the
position changes are much smaller than in the first two steps.

On the basis of these known physical characteristics of
the attenuation process, one would expect certain qualitative
features to be present in the capture distribution curves for
the various layers in the array. (Some of these features were
outlined in the previous section, but will be repeated for
completeness). These features are as follows:

1, First iron layer. The capture curve in this layer
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should be low at the left face of the layer because of the
large leakage rate of neutrons through this face (reflection).
The curve then should increase rapidly with distance into the
slab, reaching a maximum at the right face. This increase is
the result of the capture of neutrons that are thermalized in
the first water layer and diffuse back into the first iron
layer.

2. First water layer. The capture curve should be lower
at the left face of this layer than at the right face because
of greater thermal neutron leakage through the left face (via
the first iron layer) than through the right face (via the
last four layers of the array). Between these two faces the
capture curve should exhibit a maximum. This maximum is the
result of the larger thermal neutron capture cross section in
iron as compared to that of water. The iron layers on either
side of the water layer act as thermal neutron "sinks" which
deplete the thermal neutron population in the water near these
iron surfaces. The water capture rates should be smallér than
the capture rates in adjacent iron layers.

3. Second iron layer. The water layers adjacent to this
iron layer act as "sources" of thermal neutrons. These
thermalized neutrons diffuse into the iron and are rapidly ab-
sorbed. Consequently, peaks should occur in the iron capture
curve at each surface of the layer. The probability that a

thermal neutron will diffuse out of the assembly is approxi=-
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mately the same at both faces of the second iron layer, and,
thus, the thermal neutron flux and the capture rate would be
expected to be approximately the same at both faces of this
layer. If a difference exists, the capture rate at the left
face should be larger than that at the right face, because of
a general decrease in the neutron population from left to
right through the array as the source neutrons are captured.
This attenuation of the neutron flux by the slabs and, con-
sequently, thé difference just described, should increase with
increasing dimensions of the array and with decreasing source
energy. Finally, the height of the capture curve at the left
face of the second iron layer should be greater than that at
the right face of the first iron layer. Approximately the
same number of thermal neutrons should diffuse to each of
these two surfaces from the first water layer, but the larger
leakage (reflection) from the first iron layer should decrease
the thermal neutron population in that layer as compared to
the population in the second iron layer.

4, Second water layer. The capture curve in this layer
should be similar to that in the first water layer with the
exception that the capture rate at the right surface of the
second water layer may be somewhat less than that at the left
face of this layer. Attenuation in the first three layers of
the array should cause the capture rate in the second water

layer to be somewhat lower than that in the first water layer.
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Both of these effects should be larger for larger geometries
and for smaller source energies.

5. Third iron layer. The shape of the capture curve in
this layer should be similar to that in the éecond iron layer.
The capture rate at the left face of the third iron layer
should be smaller than that at the right face of the second
iron layer. This is due to attenuation of the thermal neu-
tron flux by the first four layers. In addition, the capture
rate at the right face of the third iron layer should be
smaller than that at the left face because of attenuation and
also because of leakage of the thermal neutrons through the
third water layer (transmission). These features should be
more pronounced for larger geometries and for smaller source
energies. A minimum still should exist in the curve in the
third iron layer because of the capture of thermal neutrons
that diffuse back into the iron from the second and third
‘water layers. The peak at the right face of the third iron
layer should decrease more rapidly with increasing slab di-
mensions and decreasing source energy than the peak at the
left face. Again, this is an attenuation effect.

6. Third water layer. A shallow maximum near the third
iron layer would be expected in the capture curve in the third
water layer, This maximum is caused by depletion of the
thermal neutron population at the left face of the third

water layer by diffusion into the adjacent iron "sink", and
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depletion of the population at the right face of the third
water layer by leakage (transmission) through the right face.
This leakage should normally'cause a larger decrease in the
curve near the right face of the third water layer than dif-
fusion into the iron causes at the left face. The maximum in
the third water layer should become less pronounced with in-
creasing slab size and decreasing source energy as the effect
of attenuation through the third water layer becomes larger
than the effect of the iron "sink".

These qualitative features wére evident in the majority
of the capture curves as fitted to the original data. (These
curves are the solid curves in Figures 24 to 27). In several
instances, however, the capture curves were not compatible
| with the qualitative expectations; For example, the capture
rate in the third iron layer of geometry I exhibits a minimum,
as expected, for source energies of 1.0, 0.04, and 0.02 Mev,
but no mihimum for source energies of 4.5, 0.1, and 0.0l Mev,
There is no physical explanation for this behavior. The
logical conclusion is that statistical fluctuations obscured
the peak at the right surface of the third iron layer for
certain problems. Examination of the solid curves in Figures
24 to 27 will show that exceptions to most of the expected
qualitative features are present}

As discussed in previous sections, the original capture

curves were adjusted in three ways: The data were smoothed
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as a function of source lethargy, the capture rate :in the iron
at each iron-water interface was set to 9.74 times the capture
rate inuthe water at the interface, and the parameters of the
capture curves fitted to these adjusted points were smoothed
as a function of source lethargy. (This last adjustment was
relatively smail compared to the first two). Capture curves
calculated from these final smoothed parameters are shown as
the dashed curves in Figures 24 to 27.

These final capture curves are, qualitatively, much
superior to the original capture curves. The final curves
exhibit the expected qualitative features with few exceptions,
Those exceptions that do occur are not large and are of a
relatively unimportént type. (For examplé;\£he\capture rate
at the left face of the third iron layer in geometry I is
somewhat larger for some source energies than the capture rate
at the right face of the second iron layer). It is interest-
ing to note that the larger differences between the original
curves and the adjusted curves occur in those instances in
which the qualitative inconsistencies were most pronounced in
the original curves.

These last statements must be qualified to some extent
for sources of energies near the 25 kev resonance in the iron
total cross section. For such sources, a resonance effect
is present that is smoothed out in the data processing. This

is discussed in the following paragraphs.
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Resonance Effects

The variations of the capture probabilities as a function
of source lethargy at constant x, as shown in Figures 22 and
23, exhibit rather large fluctuations for source energies of
0.04 Mev (U = 5.,5) and 0.02 or 0.025 Mev (U = 6.0). This is
particularly evident near slab surfaces. The 0.04 Mev points
appear to be unusually low, and the 0,02 and 0.025 Mev points
appear to be unusually high, This behavior is the result of
resonances that exist in the iron total cross section. A
positive resonance exists at about 0,03 Mev and a very large
anti-resonance (minimum) exists in the cross section curve at
0.025 Mev. These resonances leéd to either increased (for a
positive resonance) or decreased (for an anti~resonance)
reflection rates from the first iron slab and corresponding
decreases or increases in the number of source neutrons that
reach the water layers and that are subsedquently thermalized
and captured in the array. (This effect was deécribed in the
previous section).

. In order to resolve adequately the effects of these cross
section resonances upon the behavior of the capture rates as a
function of source energy, it would be necessary to run a
number of additional problems with source energies in the
range 0.05 to 0.01 Mev. Such an examination was not within
the scope of the present study. 1In lieu of this examination,

it was decided to smooth the data as a function of source
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lethargy, as described earlier, with, as a result, under-
estimations of the capture rates for 0,025 Mev sources and
overestimations of the capture rates for 0.04 Mev sources.
In most practical problems, the fraction of source neu-
trons that will have energies near these resonances will be
small, and the errors resulting from this lack of resolu-
tion of the resonance effects will not be serious. The ex-
istence of this deficiency certainly should be kept in mind,

however; in using the results of this work.

Sample Problem

The following example will illustrate one manner in which
the data and correlations presented in this paper might be
employed.

Consider the problem of determining the capture distri-
bution in a reactor thermal shield assembly that approximates
geometry II from neutrons leaking out of a reactor core and
impinging upon the thermal shield array. Normally, the angu-
lar spectrum of these neutrons will approximate a cosiné or
isotropic distribution, and the results presented in this
paper should apply very well. Assume that the neutrons im-
pinging upon the array have k different energies, or, that the
energy spectrum of the neutrons can be broken up into k dif-
ferent effective energy groups. Assume further that the

source strength, i.e., the neutron current into the array of
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neutrons in energy group, i, is given by Sj (neutrons/inzsec).
The probability of a neutron~neutron collision is ex-
tremely small so that neutrons in one energy group do not
affect the results from neutrons in other energy groups.
Therefore, the k energy gréups can be treated as k different
'problems and the final results can be obtained simply by sum-
ming the contributions from the k groups. |
For illustration, assume that one of the sourcé enerqy
groups has an effective energy of 2 Mev and a source strength
of lO5 neutrons/inzsec. (The treatment of the other groups
Qill proceed in an identical fashion.) From Figures 34 to
39 (or from the equations for the curves in these figures)
we obtain the parameters for the capture distribution curves
for a 2 Mev (U =.1,609) source:

First iron layer: a = 0.0279, B = 1,987

First water layer: A = 0,0373, B = 0.0920, C

-0,0892

Second iron iayer: o = 0.0956, B = 3.222, x,
0.519 |

Second water layer: A = 0.0239; B =0,0755, C =
-0.0778

Third iron layer: o = 0.0787, B = 2.178, Xo = 0,665

Third water layer: A = 0.0105, B = 0.0425, C =
-0.0520

The corresponding capture probability curves are given by:
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]

First iron layer: p(x) 0.0279 el.987x

0.037340.0920x - 0.0892x2

i

First water layer: p(x)
Second iron layer: p(x) = 0.0956 cosh 3.222(x~0.519)

Second water layer: p(x) = 0.0239+0.0755x - 0.0778x2

]

Third iron layer: p(x) 0.0787 cosh 2.178(x-0.665)

0.010540.0425% - 0.0520x2

Third water layer: p(x)
where x = 0 at the left face of each layer and x is in inches.
Finally, the capture rates in the various layers from the 2
Mev source group are given by

‘Capture rate = 10° p(x) captures/in3sec
where the p(x) are given above. (Note that the origin of each
capture curve can be translated to a common point by substitut-
ing x' - xgq for x in each edquation, where x' is the new posi-
tion variable and x3 is the displacement of the left face of
each slab in the ' coordinate system.)

These equations give the neutron capture rates throughout
the thermal shield array. The subsequent determination of the
heating that results from the capture gamma~-rays is a major
problem and one that is not solved easily; however, such
problems have received considerable attention in the field of
nuclear reactor shielding and many theoretical and empirical
approaches have been used with varying degrees of success. A
discussion of the problems involved énd of some of the common-
ly used mathematical technidques for such gamma-ray shielding

problems may be found in reference (25).
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An adequate discussion of the problem of determining the
heating rates from distributed neutron capture gamma-ray
sources in multiregion configurations would be duite lengthy
and ié not appropriate here. It should be pointed out, how-
ever, that the specification of the capture distributions,
i.e., the distribution of capture gamma-ray sources, in terms
of a sum of exponential functions, or as a low order poly-
nomial, is convenient for gamma-ray shielding calculations.
Such functional forms for the gamma-ray source distributions
often lead to closed solutions in terms of tabulated integrals
for such shielding problems (25). This was the reason for the
choice of the functional forms for the capture distribution

curves that were used in this study.
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CONCLUSIONS AND RECOMMENDATIONS

Conclusions

1. The problem of determining the neutron capture dis-
tribution in an array of iron and water slabs from neutrons
impinging upon one face of the array was successfully attacked
by means of Monte Carlo calculations with an IBM-650 digital
computer.

2, Correiations of the parameters for fitted capture
distribution curves were obtained as a function of source en-
ergy for two different geometries. This was done for cosine
sources of energies between 0.0l Mev and 4.5 Mev.

3. The Monte Carlo results exhibited predictable quali-
tative characteristics to a very satisfactory degree, All of
the features that would be expected in the capture curves, on
the basis of physical considerations, were present in the
final capture curves obtained in this study.

4, Large resonances in the iron total cross section af-
fected the capture distributions in the array. Streaming of
neutrons through the iron layers and into the water layers
occurred for sources of energies near the large anti-reso-
nance in the iron total cross section at 25 kev. This caused
an increase in the neutron thermalization rate as compared to
that for sources of other energies. A corresponding increase
in the capture rate in the array and decrease in the reflec~

tion rate resulted.
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5. Reflection and transmission fractions were obtained
as a function of source energy for the two geometries that
were examined. The effect of the 25 kev anti-resonance in the
iron total cross section was clearly evident in these reflec-
tion data.

6. The angular distribution of reflected neutrons very
closely approximated a cosine distribution, while the angular
distribution of transmitted neutrons was somewhat more peaked
in the forward direction.

7. The most important variables in these problems were
the dimensions of the layers and the energy of the source
neutrons.

8. The capture distributions appearéd tb‘be £ather in-
sensitive to changes in the source angular spectrum.

9. Calculated capture rates at certain points, particu-
larly at surface points in interior iron layers, were very
sensitive to statistical fluctuations in the Monte Carlo data.
Known physical characteristics of the attenuation and capture
processes were used to improve the_Monte\Carléﬁéstimates.

All such information should be used wherever possible to im-
prove the Monte Carlo estimates. (It should be remémbered
that, since the statistical uncertainty decreases inversely
as the square root of the number of histories, increasing the
statistical accuracy of the data by increasing the number of

histories is very inefficient.)
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10. A modification of a technique due to J. R. Triplett
et al. (1l4a) was used to treat collisions in the thermal en-
ergy range. This routine was checked against theoretically
predictable and experimental answers for water with excellent
results,

11, The rigorous determination of the statistical un-
certainty of the final capture curves and correlations in this
study was not practical; however, upper limit estimates were
obtained. These upper limit estimates were small enough so
that the data obtained are considered to be meaningful and
useful,

12, Variance reducing techniques and program optimiza-
tion are essential in Monte Carlo calculations with a machine
such as the IBM-650, A large percentage of the work in the
present study was expended in attempting to reduce the running
times for the problems and the variances of the results.

13, Use of an IBM-650 computer for calculations such as
these is practical, but, perhaps, only marginally so. Im-
provement of the program and the techniques used in this study
would increase the versatility of the IBM-650 in such calcu-
lations; however, this effort might possibly be expended more
profitably with a larger and faster machine should such be
available,

14, The Monte Carlo method offers a versatile and, it is

felt, an important tool with which to attack neutron transport
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problems. Monte Carlo techniques and methods are becoming
more standardized sb that the novice can apply Monte Carlo
effectively to a wide variety of problems. As experience in
the field is accumulated and disseminated, the Monte Carlo
method should become a calculational tool of increasing value.
(This statement also applies to many problems other than those

in neutron transport).
Recommendations

1. The machine used in this study had a 2000 word drum
memory. This is to be replaced soon by a 4000 word drum. The
program should be re-written for this new drum and optimized
more efficiently. The source energy limitation also could be
relaxed with a larger drum, and other refinements (e.g., more
detailed treatment of iron inelastic scattering), which were
impossible with the 2000 word memory, could be added.

2. Improvements in the Monte Carlo technidues should be
sought continually in order to decrease the variances of the
results obtained in a given amount of computing time.

3. Some means of testing the high energy portion of the
program should be found. Work that may be pertinent is under-
way at present, and more is planned for the future, at the
Iowa State University reactor. These studies might be used
to check the reliability of answers produced by the Monte
Carlo program,

4, The effect of geometry changes upon the capture dis-
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tributions should be studied in detail, Some means should be
found, if possible, of correlating this information in a use-
ful manner. This task will probably be difficult, but the
systemization of geometry effects must be accomplished before
the present data will be of maximum usefulness.

5. Better resolution.of the’fesonénce'effects in the

capture distributions a ion of source energy should be

obtained. The range of source energies between 0.0l Mev and
0.05 Mev should be examined in more detail,

6. The effect of temperature should be examined. It
would be expected that the capture rates would not be sensi-
tive to temperature changes; however, this should be verified.

7. The effect of errors in the cross section data used
in this study should be determined. Examination of the effect
of changing the énergy variation of the capture cross sections
would be particularly interesting. In addition, the total
cross section data are rather uncertain in the thermal energy
range; The effect of errors in these data should ke studied.
FPinally, effects arising ffom smoothing the many small
resonances‘in the iron cross section data as was done in this
wbrk should be studied.

8. The effect upon the capture distributions of un-
certainties in the iron inelastic scattering physical model
and in the iron inelastic scattering cross section and gamma

emission probability data should be examined. These uncer-
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tainties will be more important if the upper limit of the
source energy is increased.

9, Quantitative studies should be made of the effect up-
on the statistical uncertainties of variations in the Monte
Carlo techniques. For example, optimum values should be
sought for the termination probability and the value of Wp
in the Russian Roulette routine. In the present study, a
termination probability of 0.5 and values of Wi between 0.1
and 0.3 appeared to give the most satisfactory results. How-
ever, no quantitative study of these effects was made. In
addition, the effect upon the variances of such techniques
as the uniform first collision weighting routine should be
examined. (These statements also apply to new variance re-
ducing techniques‘that might be added to the program).

10. Methods of determining the statistical reliability
of the curves and correlations as presented in this work should
be studied. The amount of improvement of the variances of the
final answers as compared to the variances of the original

data points should be established if possible.
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APPENDIX A

Distance between Collisions

The probability that a neutron with energy E will suffer
ban interaction while traveling through a homogeneous materiall
is known to be a constant per unit distance traveled. This

”vwécﬁStaﬁtfdepends‘QgLy_upon~thefengpgy of the neutron and upon

icglatpﬁédium‘béing versed. The constant is the

mﬁCroscoﬁi. total cross sect _sﬁélly is designated by

Zep e .

If a beam of N uncollided neutrons with energy E impinges
normally upon a small thickness, dy, of a material, then, on
the average, a fraction, Zp(E)dy, of these will be removed
from the incident beam as it passes through dy. Thus,

X = s (Eay

The solution of this equation gives'the well-known ex-
ponential attenuation law for the fraction of uncollided neu-
trons at a distance y into a layer of material from an initial

" beam of N, neutrons impinging normally upon that layer at y =

0.

N e-ZT (E)y
NO

The probability that a neutron will travel uncoilided

l'I'he following statements apply equally well to a materi-
al with uniform inhomogeneities of a size that is small com-
pared to the mean free path between collisions of the neutrons
in the medium,
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through a distance y in a material with total cross section,
Zp(BE), and then collide in an infinitesimal thickness dy is,
therefore,

p(y)ay = e T(E)¥5

o (E)dy
The function, p(y), is the probability density function
_,_describing the‘position, y, for the first collision of a neu-

tron starting at y = 0 and traveling along the direction y in

i o
with total cross section Sn(E). (Note thatL/‘ p(y)dy
0

as required for the probability density function.)
If we measure distance along a direction x with which the
direction y makes an angle ©, the probability distribution for

the first collision as measured along x is simply

Zm(E
sp(E) B X

p(x)dx = e cos © ax

cos ©

where x is the distance traveled in the direction x from the
point of origin of the neutron (x = 0).

Now, consider a neutron with energy E; traveling at an

hgle ©; to the normal direction x of Figure 1 after having

" undergotie

collision at x;. The distance measured along

% to the i +“l_‘*cdilision is distributed as

Sap (E4) e L L S AT
P(bx, 1) = %58, © °°%8i (.1)

where Ax;,; is the distance along the direction x between col-

lisions i and i + 1, To specify the position of the i + 1St

collision, we must pick a random Axj,; from the distribution
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A.l and then set
Xjqpl = Xi + AXi+l
A common method of selecting a random sample from dis-
tribution A.l is to use the "Golden Rule" described earlier.

The resulting equation spec1f1es Ax 41 2aS

AXjql = S(E0)

'where R is a‘random number selected from the interval (O l)

The cagculatlo hof the necessary hundreds Bf thousands of

thms for this study using this method Would require very
ﬁ§‘amounts of computing time on the IBM=-650, The following
alternative method suggested by Dr. H. 0. Hartley of the Iowa
State University Statistical Laboratory was used,

If k¥ random samples, yi,”are picked from k independent
normal distributions with means u; and variances 012, the
variate

. 2

u = i ( Yi ~ Hj
o 3 i=1 Oi
_has a‘Ehiﬁsgua;ed;distfibutibn’WIthvk,deéﬁggﬁ of freedom (10,

p. 199),

(k/2 - 1) 2k/2

Now, take k = 2 and let the original distributions be

N(0, 1); 4i.

€., normal with means O and variances 1. We get
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pla) =k (u >0) (3.2)
Let
Y = hu
ay =%au

The probébility distribution function for ¥ isythus‘ |
p(¥) =e™ (¥)0) (2.3)
“'i_g‘ Y 1s exponentlally dlstrlbuted E
“To plck a random~sample, Y5, from an éxponentlal dlstr1~‘xﬂ
butiépﬁyé éick two random samples, Yl and yy, from N(O, 1) and |
set B
Y; = 5y + yp) = vy

Y3 willzthen be a random sample from the distribution A.2.

A table of 300,000 such exponential deviates was calcu-
lated with the IBM-650, using a table of random normal devi-
ates, i,gg, random samples from N(0, 1), prepared by the RAND

‘tion (26). The RAND table contains 100,000 normal

dev1ates (avallable on 10,000 standard IBM cards) from which
‘50 OOO exééhentlal deviates were calculated using the RAND
cards’ln serial order. The RAND normal deviate cards were
thén put in random order by sortihg on four successive random
digits that were punched into each card from a table of random

digits also prepared by the RAND Corporation (14b). The normal

deviates on each card were then put in random order, as they
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entered the IBM-650, by means of control panel wiring and
another 50,000 exponential deviates were calculated. This
procedure was repeated until a total of 300,000 exponential
deviates had been prepared. This table served as a source of
random samples, uj, from the distribution A.2.

The distribution of the exponential deviates in this
" table was checked by means of-the'followiﬁg goodness-ef-fit

tests., These:tesfs‘were made for each block of 50,000 ex-

ponentlal dev1a

Chl-sqd'red test

e

Supﬁbse that a sample of size n is drawn from a popula-
tion with distribution £(¥). Let the Y axis be divided into
k intervals AY;, i = 1 to k, and let n; be the number of ob-

servatiofis falling in the interval AY;. Let the probability
p<1

eéﬁ;éﬁféinlgg a sample,ihnAYi5B§“éééiﬁﬁéféﬁ?ﬁyﬁpiﬁﬁi/:;Qﬁgﬂdxﬁ;wuymﬁﬂ““4*

Yi-l

The variate -2 log A, where A = n" 'rr (plj , has a chi-
N | n; - .

”squared distribuiion with k-1 degrees of freedom as n becomes
large (10, p. 270).

Thus, if the value of -2 log A is calculated that corres-
ponds to a given sample and the distribution that is to be
tested (the exponential distribution in this instance), a
table of cumulative chi-squared distributions can be used to

£ind the probability of obtaining a value of the deviate
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-2 log A that is larger than the one that is calculated, pro-
vided that the distribution being tested is the correct dis-
tribution for the sample. If this probability is small, then
it is likely that the assumed distribution is incorrect.

For example, assume that the probability, P(-2 log k'_z
-2 log A), of obtaining a value of -2 log A larger than the

one calculated, is 0.40. This means that one would expect

fthat 40% of -all samples of size n from the assumed dlstrlbu—

tlon would have va:ues of -2 log A larger than that obtained

for the samplgk@; g conSLdered. Therefore, there is little

'Wu*fw;;;§g§gg@wgﬁithé basis of the sample, to believe that the as-

" sumed distribution is incorrect. If, on the other hand,
P(-2 log A' ) =2 log A) is, say, 0.05, one can conclude that
either the sample is a very unusual one or, that the sample

‘ 1s not from the assumed distribution. The assumed distribu-

tlon wouldee very suspect in this instance.

The results of the~c~\ ed goodness-of-fit tests for

fhe'six“sets of S0,000‘exponentiay‘_éﬁiates are given in Table
16 for k = 21, e

Table 16. Results of the chl—squared goodness-of-flt tests
for the calculated exponential deviates ’

Deviates -2 log A P(-2 log A > 2 log A)

1-50,000 17.02 0.64
50,000~100,000 17.48 0.63
100,000-~150,000 18,60 0.54
150,000~200,000 17.88 0.60
200,000-250,000 16.04 0.70

250,000-300,000 20.40 0.42




174

Kolmogorov-Smirnov test (27)

The procedure here is to plot on the same graph the cumu-
lative distribution for the distribution to be tested and the
observed‘cumulative distribution of the sample. Curves are
then drawn at a distance dy(n) above and below the assumed
distribution, where valﬁes of dg(n) are given as a function
of significance igvel,ua, énd sample size, n, in reéerence R

' (27). If the sample cumulative distribution passes outside ==

the band between the two dd(n),ggpgl esis that the

sample is from the distribution being tested is rejects f””“””’”ff%
The value of dg(n) for a sample size of 50,000 at theIS%

level is 0.0061, (If repeated samples of size 50,000 are

taken from a distribution, f(y), the sample cumulative dis-

tribution would be expected to lie wholly within + 0.0061

of the cumulative distribution of £(y) for 95% of the samples).

Table 17 shows the maximum deviation of the observed cumu-

lative distribution from the cumulative exponential distribu-

tion for the six sets of exponential deviates that wére calcu-

lated.




Table 17. Results of the kolmogorov—Smirnov goodness~-of~-fit test for the cal-
culated exponential deviates

% ; >”¥i>;tfj - dg(n) = maximum deviation

Deviates Maximum samplngggéggipn for 5% significance level
1-50,000 c;’ 0;5542 | - 0.0061
50,000-100,000 0}5b36 0.0061
100,000-150,000 o§9b32 | 0.0061
150,000-200,000 g d;po43 . 0.0061
200,000-250,000 020054 ‘,;;, ..0.0061

250,000-300,000 ” |

0.0033 -  0.0061

SLT
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APPENDIX B
Energy Change in Elastic Scattering Events

Consider an elastic collision between a neutron of mass

m and a stationary nucleus of mass M. We make the following

definitions:
.in;l =“the‘kinetic_energy of the incoming neutron as
}qﬂhh"‘meeSuted-ih thejlaboratofy‘sYStemfofacedrdinateS¢ii«
X = the distance from the heutron to the nucleus be-
fore the colllslon:n N
 "‘X = the dlstance from the cehter-of-mass of the two
~particles to the nucleus beﬁore the_coli s;qn
v* =:the magnitude of the neutron's velecity as
{measﬁred in the center-of-mass system of co-~
Cordinates
vi;l = the magnitude of the 1nc1dent neutron's veloc1ty

Vi = the-magnltude of the scattered neutron's velocity

as measured in the laboratory system of‘cqordi-
nates -
V¢‘=chevme§nitude of the velocity of the center-of-
mass of the two particles as measured in the
laboratory system of coordinates
¥ = the scattering angle as seen from the laboratory

system of coordinates

asmegsured- in the, laboratory System of coordlnates"“’“ﬁ
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w* = the scattering angle as seen from the center-of-mass

system of coordinates.

The laboratory system of coordinates is defined as the
system in which the nucleus is stationary before the collision.
The center-of-mass system of coordinates is defined by

the requirement that the total momentum of the particles as

measured in this coordinate system shall be zero.

Slnce no external forces act, upon the two partlcle system}if“““* 

yaﬁd the masses and total energy are unchanged by the collision,
it is eas1ly shown (2) that the velocities of the neutron and
the nucleus in the center-of-mass system are always oppositely
directed and remain unchanged in magnitude by the collision.

The conditions that prevail before and after the ddiii;_
~ 'sion in both coordinate systems are shown iﬁfFiguresF42a and
42b (9, p. 137). | |

The vector diagram that describes the neutrohvveleéiiy
after the collision is given in Figure 43.

If the center-of-mass coordinate’§ystem is chosen so that
””iﬁé”efiéiﬁ”ié”ét;fﬁewgepge;eof—mass of»the two particles, we
can write : o ‘ v

(m + MX = mx

or .
X = mx
M+m

Now, take the time derivative
s - _ MX

M+m
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LAB SYSTEM C SYSTEM
-~
NEUTRON NEUTRON
y AFTER
— x
B v CM 3\;1 NUCLEUS
- j‘{’__ Cor W Ty N BEFORE
JEUTRON NUCLEUS\ ;;L%H.,__. NEUTRON VR Vc
BEFORE BEFORE N SR BEFOR /
\\AFTER : /4% 5
‘nﬂFlgure 42a. A neutron—nucleus Figure 42b., A neutronanucleuS‘ 
© “collision in the laboratory .. collision in the center-of-

system of coordlnates T fj;;,mass'system of coordinates

e e = K

 DIRECTION OF
INCOMING NEUTRON .

v

[}

‘igure 43. Vector diagramwfbr'a'neutron-nucleus collision
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If the nucleus is stationary in the laboratory system be-
fore the collision, the speed of the nucleus as seen from the
center~-of-mass system before the collision clearly must be the
same as the speed of the center-df—mass as seen from the

laboratory system., We can thus write

aVc=5(= m}.{=mvi-l
M4+ m M+ m

Recalling that the total momentum is zero in the center-

" of-mass system we have

mv. = MVe
or
We now'refer to Figure 43 and equate components along the
X=-axis,

Vi cos ¢ = v* cos ¥* + Ve
‘and, along the y-axis, “

* . *
V' sin ¥ °

i

Vi sin v
Squaring and adding these two equations we get

vi2 = v*2 4 Ve? + 2V*Vg cos y*

2 2 2
M+m M+m (M+m) 2 .

Finally, recalling that the kinetic energy is given by

E = % nmv?

we have
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Ej _ Vi2 _ M% + m? + 2Mm cos y*
Biy Via? (M+m) 2
or
Ey 1+ a® + 2a cos y*
Ej-l - (l+a)2

where a = M/m.
This equation gives the change in kinetic energy of a
neutron w1th energy El—l upon belng scattered through an angle
¥ ias measured in the center-of-mass system of coordlnates.IMﬂh*“”"
This expression is derived in terms of the center-of-mass

scattering angle because, in general the probablllty dis-

tribution of the scatterlng angle has~a”51m.-er f nctlonal

form in the center—of—mass system than 1n the laboratory sys-
tem, The energles in thlS last equatlon, however, are

measured 1n the l’boratory system.
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APPENDIX C

Energy Change in Iron Elastic Scattering Events

When the nuclear mass is relatively large, an alternate
equation for the energy change in elastic scattering events
may be derived which is more convenient to use than that pre-
sented in Appendix B.

Taking the square root on both sides of the equation that

was presented in Appendix B:

bl

(1 + a)2

Let ' A = l_.i'_i?__ '
J (1L + a)2

2= Zacos i (a = ¥ = nuclear mass/neutron mass)
1+ a2 m
Ckbaéét
. JEE- = ‘A‘Jl + 2z | e

5 0*

 We expand this-latter.expression in a Taylor's series to
Rt ®

| get;lgor small z, O
Si 1 12
T—= = A(l +§_Z -~ -8—2 )
Ej-1
with absolute error less than
1 3

16
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If the masses for iron and the neutron are substituted

in these expressions, the energy change is given by

.\f Ei
= 0.982419 + 0.017738 cos ¥*
NEj.1 v

- 0.000160135 cos2y*

with absolute error less than 0.00035%.
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APPENDIX D
Conversion of the Center-of-Mass Scattering Angle

to the Laboratory System

The vector diagram describing the velocity and scatter-
ing angle of an elastically scattered neutron is given in

Figure 43.

As was shown in Appendix B, we can write,
Vi Cos Y5 = V¥ cos ¥i¥ + Vg =(!ﬂ—rcos wi* + —ELJ Vi_1
LT _ ‘ M+m M+m

.and

v;2 M2 + m? + 2Mm cos wi*\

M+ m)2

Therefore,

1L+acos y;*

cos Y =

__Jl + a2 +@2§;C5‘

where a = M/m=nuclear mass/neutron mass.
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APPENDIX E
Angle between a Scattered Neutron's Velocity

and the Slab Normal

Consider a neutron with velocity'v;_l that is scattered
through an angle ¥; with resulting velocity ?1 (2ll quantities
are measured in the laboratory system of coordinates.) We de~
fine a ceordinate system (x, v, 2), as in Figure 44, such that
X is in the direction of the normal of the array in Figure 1
and such that Vj_j is in the x-z plane. The velocity"?i;l
makes an angle ;.3 with the x-axis. N |

In general,‘thevvelbcity'ﬁi will,be,tqtated‘throqgh-an"

azimuthal scattering angle ¢j

' with the X-axis

Con51der a coordlnate syster

;talned by rotatlng the system (x, y, z- a o
through an angle ©;.1 as in Flgure 44 so that the x! —axms lies
along the direction of Vi-l’ The component= of V ‘in the |

(x*, y', z') system are:

Vx‘ = Vi cos Y4
V,* = V; sin ¥; cos @g;

The transformation from the (x', y', 2z') system to the

(x, v, 2) system is:



»X (DIRECTION
' OF SLAB NORMAL)

B

Figure 44, Angle between a scattered neutron's velocity and
the x-axis



Therefore,
Vx

Vy

bvz

Substituting
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x = x' cos ©;.1 - 2' sin &3]
z = x' sin ei 4+ 2' cos 8,

-1 i-1

cos 83 _ 1 — Vyi Sin 8; 5

x|
= Vy|
= Vgr sin 8; 4, + V,. cOs 8, ,
for Vxl, VY| K] and VZ' s

Vi cos y; cos ©;_; -~ Vi sin y; sin ©;_37 cos g5
Vi sin ¥4 sin @j

Vv cos ¥; sin 6j-1 + Vj sin y; cos ©,_; cos ¢i

‘The cosine of ©; is given by ' :

v

| CQS Gi‘-—_- T,

X
1

= cos Y, cos ©;_1 - sin y; -sin 6; cos @i

- Note that, if'¢i is random on (0, 27), we may use edqual-

ly well

cos ©; = cos Y; cos ©;_; + sin ¥; sin ©;_; cos 2
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APPENDIX F
Probability Distribution for the Cosine of

an Anisotropic Scattering Angle

Differential elastic scattering cross sections for this
study were obtained from compilations made by Nuclear Develop-
ment Corporatibn of America (13), (28). The angular distri-
bution data in these compilations are represented in the form
of Legendre expansion coefficients, fL’ defined by

OB, ¥7) = § E;% L2200, fL (E)B, (cos ¥™)

"»-where

n(E w ) % éifferentléiaela;; e ’k“féééfiqhafn‘

in the center-of-mass coo:

:(barns/steradlan)
7Wﬁ=ﬁthe de Broglle wave-length @» 

”“Jneutron lelded

PL(X) = Legendre polynéﬁiéldofﬁbrdér”_

L (-1)J(n - 2§)t  1-2j"

L = L, . aen g X
%o 20t (m-d) (L-2i)
£ = £ /€ :
L /%o .
£,' = 0p(E)/2mR?

Thus,
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o0

O, (E)
o, (E,y%) = L LZ___O L2L) fP(E)PL(cos ¥y =
0.8]
O (E) > (2L+1) £, (E) Py (cos y7)
4T L=0

We can transform this differential cross section expan-
sion into a probability distribution for the cosine of the
scattering angle as follows: |

From'the definition of the differential scattering cross-

section we must have

; T
op(E) = cn(E,w*)d§l = 2T /‘Gn(E,W*) sin w*dw*
otal Y0
solid
angle
00
=92 p1 5" (2141) £ (B)Pp(cos ¥*)d cos ¥
2 -1 =1 B
° 1
_ () f (2L+1) £, (E) [ Py (cos ¥™) & cos y*
2 =0 1

The last step in this equation is permissable because of the
convergence properties of the Legendre polynomials.

It is easily shown that

1
/‘ PL(x)dx 0 for L £0

Vel
2 for L =0

Therefore,

op(E)=  0p(B)/£,
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or,

*
Thus, the probability_density function for cos Y is:
% 2 % 1 =2 ' #*
p(cos ¥ )= —=— 0,(E, cos y7) = '5-:Z:(2L+l)fL(E)PL(cosw“)
Om (E) L=0
Note that
1 . .
JP p(cos ¢¥') d cos ¢y~ = 1
-1
For energies in the range of interest in the present

study (0 to 4.5 Mev), the differential cross section expan-

sions were limited to a maximum of nine terms (13); i.e.,

8 )
plcos ¥v*) = Eéé (2L+l)fL(E)PL (cos ™)

NoJH

This equationﬂwas put in the following more convenient

form for uée in the calculations,
8 i
p(x)= >_ ij
j=0

where X = COS w*
The first nine Legendre polynomials and the corresponding

coefficients, Aj, used in the calculations are as follows:

Polx) =1
Pi(x) = x

Pylx) =3 (3x° - 1)
P5 (x) =.;, (53 - 3x)
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4
%-(35x - 30x2% + 3)
%-(63x5 - 70x°> + 15x)
1 (231x5 - 315x% + 105%2 - 5)
16
f%. (429x7 - 693x° + 313x° - 35x)
1%5.(6435x8 - 12,012x% + 6930x* - 1260x2 + 35)
(..];f _2_.7.f 2393 - §.f _6_5_f
3 t0 t 75 Fa T 55 £g) (4 2 T 33 6!
3 165 21 525
(5 f1 + Fgfs) - (&5 + 55 1)
15 1365 . _ , 270 21,420
(F-f2 + =337 )~ (T £4 + S5Eg— £3)
35 4725 770
7 £3 + 337 5) - T35 &5
315 117,810 4095
(55 fa + =5kg— fa8) - 357 £,
693 10,395
16 f5 - 32 f7
3003 204,204
35 f6 - T5Eg — Ig
6435
32 Iy
109,395 .

256 8
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APPENDIX G

Random Samples from the Maxwellian Velocity Distribution

The velocities of the molecules of an ideal gas at ther-
mal equilibrium will be distributed according to the Maxwell
velocity distribution (18),

2

3/2 . =MV4/2k.T

p(V)dV = p_(ﬂ av = 47 _....M..... V2e B av (G.l)
n , ZWkBT

where n is the total number of particles per unit volume,
n(V)dv is the number of particles per unit volume with veloci-
ties between V and V + dV, and p(V) is the probability density
function for the velocity V.

Consider the problem of selecting random samples from

this distribution. Define a variable, X, by

x= M vy
2kgT

The probability density function for X is obtained by substi-
tuting for V in equation G.1.
-x2

p(X) = _4x2 e ax
NT

Now, we truncate this distribution at X = 3,2 (i.e., we
neglect the less than 0.03% of the velocities that lie beyond
this point), and divide the X axis from 0 to 3.2 into 16
intervals of 0.2 each., The probability that X will lie in a

given interval, X1 ( X < X, is
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Xi X,
Pi =C4 - Cj1 = p(X)ax —f p(X)dax
0 0
where
ﬂ‘Xi
i =\/ P (X) aX
0 _

is the cumulative distribution at X;.

Table 18 gives the cumulative distribution for each of

the X divisions (22).

X3
Table 18, Cumulative distribution, Ci‘=JF p(X)dx, for the

4 0 2

density function p(X) = = X2 e

NES

X3 Cyi
0.2 . 0.01735.
0.4 0.07890
0.6 0.19226
0.8 0.34459%
1.0 0.51064
1,2 0.66464
1.4 0.78926
1.6 0.87859
1.8 0.93587
2.0 0.96894
2.2 0.98621
2.4 0.99440
2,6 0.9979%4
2.8 0.99933
3.0 0.99984
3.2 0.99999

A random sample is picked from the distribution G.l by
comparing a random number, Ry, from the interval (0, 1), with

the cumulative distributions in Table 18. The X value that
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correspbndé to the first C; that is larger than or edqual to Rj3
is a random sample from the X distribution. Note that since
P(R _(_ R3) = R3 each X is selected with the correct probabil-
ity, The corresponding random sample, Vi, from the distri-

bution G.1 is given by

If the particles involved have mass M in amu, and T is
given in °K
V; = 0.0012897 Jggxi
where V is in units of 10° meters per second. (This unit for
V was chosen- for convenience in the fixed point calculations

with the IBM~650 program).
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APPENDIX H
Energy and Direction Changes for Elastic Scattering

- at Low Energies

When a neutron-nucleus elastic scattering event occurs
at a neutron energy such that the neutron's velocity is com-
parable to the velocity of the bombarded nucleus due to its
thermal motion, the edquations presented in Appendices B, C,
D, and E are no longer valid. At such energies, it becomes
necessary to take into account the velocity of the nucleus
and to correct for the chemical binding effects that become
relatively more important as the energy of the incident
neutron decreases,

The following modifications in the elastic scattering
treatment used at higher energies (Appendices B to E) were
suggested by J. R. Triplett et al. (14a), (22) for elastic
scattering events at thermal energies.

FPirst, a correction is made for the effect of chemical
binding‘by allowing the effective nuclear mass to increase
with decreasing energy of the incident neutron.

In addition a velocity increment, AV, is added vectorial-
ly to the scattered neutron's center-of-mass velocity as de-
termined in the manner of Appendix B. This velocity incre-
ment is isotropically directed in the center-of-mass system of
coordinates and has a magnitude selected at random from the

Maxwellian velocity distribution for the particular nucleus
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involved in the collision. The vector diagram for this

process is shown in Figure 45. The outgoing neutron's veloci-

ty is taken to be the resultant of this addition. The follow-

ing definitions will be used:

X

v

the direction of the slab normal

the lab system velocity of the incident neutron
(v and z are chosen such that V is in the x-z
plane)

the velocity, as measured in the lab system of
coordinates, of the neutron-nucleus cehter of
mass

the angle that the incoming neutron's velocity
makes with the slab normal

the outgoing neutron's lab system velocity as
determined with the method of Appendix B

tﬁe outgoing neutron's velocity (via Appendix
B) as measured in the center-of-mass system
the velocity increment added to V,* to correct
for the nuclear thermal motion |

the emergent neutron's velocity as measured in
the lab system

=

the angle between V, and the x-axis

the angle between V and Vy
the angle between V and V_*

The direction cosines of'ﬁb are:
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_ DIRECTION OF V

Y

Figure 45. Vector diagram for a thermal energy neutron-
‘nucleus collision

YA
|
¢
a |
"
N /
N1/
\\V

Figure 46. Two-angle designation of an isotropically
distributed direction
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g = cos ei_l

=0

¥ = sin 851

Elastic scattering at low energies (with the method of
Appendix B) is isotropic in the center-of-mass system of co-
ordiﬁates. Therefore, the direction of'Vh* can be specified
by an angle, (), the cosine of which is uniformly distributed
on (-1, 1), and an azimuthal angle, ¢, that is uniformly
distributed on (0, 27) (see Figure 46). The direction cosines

of VL* are thus specified by

g = cos{)L = 2R; -1

B = gin() sin 4 = “]l;(ZRl—l)z sin ¢

¥'= sin{) cos ¢ =~1-(2R;-1)2 cos &
where Rj is a number chosen at random from the interval (0, 1)
and ¢ is selecied at random from (0, 2m),
The incremental veioéity, Ev, is also isotropically
directed in the center-of-mass system and its direction co-
sines are specified by

a''' = 2Rp-1

Btt =N1-(2R,~1)% sin ®

181 ='Jl-(2R2—l)2 cos o

where R, is random on (0, 1) and w is random on (0, 27).

The magnitude of AV is given by (Appendix G)

AV = 0,0012897 \/—g X
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where T is the temperature (°K), M is the mass of the nucleus
(amu), and X is chosen at random from a probability table as
described in Appendix G.
We can now make the vector addition.
The cosine of the angle between V and V,* is given by
IL = cos W* = qa" + PB" + Yy"
Let a', B'; v' be the direction cosinés of'vh.

From Appendix B,

V. = mV = _V
€ Mm 1ta
v * = MV - av
n M+m 1+a
v =V l+a®t2ap = vc
n 1+a
1+a
where
—
C = l+a2+2au
a = %—= nuclear mass/neutron mass

Equating components along the x-axis,

— * 11}
Vna' = Vo + Vn a

Therefore
a' =Ye a4+ V¥gr o Odaat
Vn Vn ) C
Similarly,
pr = piaB’
c.
‘Y' = k+a!“
c.

The vectors'ﬁh and AV can now be written in the following

form:
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'Vh = (Vpa', VpB', Vpy') =
Vn
?;-(a + aa", B + ap", y + ay"“)

AV = (AVQ '™, AVB''', AVy'')
The resultant vector,f?é, is, therefore

—— . S —
Ve = (Veys Ve,s Ve,) =Vn + &V

Y
where
Vex = YEQ (¢ + aa") + Ava'"
Ve, = _‘(’_:r_l_ (B + aB") + AvB'™
Ve, = Vn (y + ay") + Avy'"
c

The magnitude of'Vé is given by

2 2 2

 y2¢2
Ve = Vex + Vey + Vezz = _V._.(_:__ + AVZ + -z—%-g[(a+aa")a'“ +

1
(1+a) 2
(B_I_aBll)Blll‘ + (.Y+a,Yll),Ylll ]
To find the angle between’?é and the x-axis, we edquate
components along the x-axis,
Vg cos 83 = Vo' + Ava'

or finally,

[V(a + aa")

T + Ava'™] / Ve

Cos 64

These equations, with the appropriate effective mass for
the nucleus, were used to establish energy and direction
changes for neutron collisions at thermal energies.

In the present calculations, the nuclear mass was con-
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sidered to be a function of the incident neutron's energy only
for the case of hydrogen collisions. Collisions with iron will
in general, change the direction, but will not drastically af-
vfect the energy (some exceptions to this occur at very low
energies). Furthermore, the large capture cross section of
iron, particularly at very low energies, means that the number
of low energy iron collisions is relatively small. The low
total cross section of oxygen compared to hydrogen also as-
sures that the fraction of low energy collisions that are
with oxygen is small. Thus, neglecting the chemical binding
effects in thermal collisions with iron and oxygen should
introduce only small errors. |

on the other hand the increase of the effective mass of
hydrogen with decreasing neutron energy must be taken into
account., As discussed in detail in the main part of this
paper, the effective mass scheme that seemed to give the best
results in the calculations was approximately the following:

My = 2aH -1

where My is the effective mass that was used for hydrogen and
ay is the effective proton mass reported in reference (23).
A graph of ay at 298°K is given as a function of incident neu-
tron energy in Figure 47 (22).

In summary, the energy and direction changes for col-
lision number i occurring at low energy are given by

E; =% m ve?



|
T=298°K
-]
|
]
0 | l i
o il 1073 ‘ 10°2 To 1.0 , 10

E (ev)

Figure 47. Effective scattering mass of proton in water vs neutron enerqgy

T0C
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2~2
Vez = _.Y_g__z_ + AV2 + 2VAV [(a + aa*)a'"' + (B + ap")B'""
(1+a) l+a

+ (v + ay")y"™]

= V(e + aa") ."]
cos 64 [ T+ a + AVa ‘/Ve
2E.;
2 i-1
V= m
a = cos ei—l
B= 0
Y = sin ©;._31
a" = 2Rl—l

g" = N1 - (@")2 sin ¢

a''t = 2R2 - 1

Bnu = '*1]_ - (anl)2 sin ®

y'" = N1 - (') 2 cos w
c? - 1+ %? + 2ay
u - aall + 66" + W"
AV = 0.0012897 ﬁ. X

where Ry and Ry are random numbers from (O, 1), ¥ and @ are
random angles from (0, 27), and X is a random variable select~-

ed from a probability table as described in Appendix G.
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APPENDIX I
Rejection Technique for Picking Random Samples

from a Distribution

Consider a random variable X, a g_x g_b; with probabil-
ity distribution function v = £(x) defined on the interval (a,
b) as shown in Figure 48. Assumé that it is desired to select
random samples of X such that the selected samples will have
the distribution f(x) as the number of samples becomes large.
The following rejection method for doing this was proposed by
von Neumann (4). |

1, Define a rectangle that compleﬁely contains f(x),

such as the rectangle M'ab in Figure 48,
2. Select a point (X, ¥Y) at random from this rectangle,
3. If Y is smaller than £(X), accept X as a sample from
f(x). Zf Y lies above £(X), reject X and repeat 2
and 3.

To see that the accepted values of X have the proper dis-
tribution, we consider the probability of obtaining and ac-
cepting a given X value. If tﬁe point in step 2 is‘selected
at random, the abscissa will be uniformly distributed on (a,
b) and the ordinate will be uniformly distributed on (0, M'),
The p;obability of selecting an X value that is in a small
interval Ax is clearly Ax/(b-a), while the probakility that
the selected ordinate will lie below £(X) is simply £(X)/M'.

The probability of selecting an X in Ax at x and of accepting
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M fb— — — —

f(X)

Figure 48, Rejection technique for picking random samples
from a distribution

~
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this wvalue is given by the product of these two independent
probabilities or

P(selecting X in Ax at x and accepting it as a

sample) = £(X) Ax/M' (b-a)

i.e., the acceptance probability is proportional to £(X).
Therefore, the accepted values will have the distribution £(x)
as the numbef of samples becomes large,

The rejection technique was used in the present study to
select the cosine of the scattering angle in anisotropic
elastic scattering events. The probability distribution for
*%1e cosine of the scattering-angle (in the center-of-mass sys-
tem of coordinates) when a neutron of energy E;.1 suffers an

anisotropic scattering event is given by
K k
p(cos ¥i*) = El 2y (Bj_7) cos wi*
k=

The rejection method for picking a cosine from this dis-
tribution is as follows:
1. Let M' = the maximum value of p(cos y4*) for -1
cos wi* L.
- 2. Select two random numbers Ry and Ry from the interval
(0, 1). |
3. LetX=2R] -1

4. Calculate p(X) = j>_l Aka
k=1

5. If M'Ry ¢ p(X), let cos y;* = X. If M'R, ) p(X),
repeat stéps 2 through 5,
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Obviously, the utility of this method depends upon its
efficiency, i.e., upon the average number of trials that must
be made in order to obtéin a sample. The avefage number of
trials per sample may be derived as follows (6).

The probability that a given trial will be successful
or the probability that the randomly selected point will lie
in the shaded area of Figure 48, is equal to the ratio of
the area éf the shaded poftion of Figure 48 to the area of

the rectangle M'-a+b, i.e.,
b
P(success in one trial) = \/\ f(x)dx/M'(b-a) = E
a

Since f({x) is a probability density function,

fbf(x)dx

a

Ii
=~

Therefore,

N T
M*' (b-a)

and the probability that a given trial will fail is 1-E.

We ‘may now write the probability of n-1 failures followed
by a success, i.e., the probability of n trials for a sample
of X.

P(n) = (l-E)n'lE = the probability density function
for the number of trials needed
to obtain an X
The expected number of trials needed to obtain an X value from

f(x) is, therefore,
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(06)
=3 mp) =2, m-pt =2 & 4LE" 1)

n=1 n= n=

= L3 o
n=1
Now,

x

n _ 1 —~ 1-E
1-E) " = — -1l = =2
2 OB = gy :

and the expected number of trials is:

- - d (l-E = L=
n = -5 —. (=== = == -
dE ( E ) E Mt (b-a)

w

In selecting cosines of scattering angles in the present
work, the expected number of trials was between 1 and 14,
depending upon the material and the energy of the incident
neutron. The majority of selections had an expected number

of trials between 1.5 and 4.
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APPENDIX J
Generation of Cosines of Angles That Are Random

on (0, 2m)

The azimuthal angle, @, in a neutron scattering event
usually is assumed to be uniformly distributed between 0 and
2T. One obvious method of obtaining such a random angle would
be to let § = 27R, where R is random on (0, 1l). However,
since only the cosine of the azimuthal angle is required in
the present calculations, we can make use of a convenient
technique suggested by von Neumann (4) to circumvent the

lengthy cosine sub-routine, The method proceeds as follows:

1. Choose two numbers, r; and r,, at random from (0, 1).

2. 1If rlz + r,2 > 1, reject r; and r, and select two new

random numbers.

2rlr2

3. If r 2 + r,2 {1, let cos g = c

1
]'.'12 + r22

where ¢ is plus or minus one with probability 1/2.
The efficiency of this process is %.. The resulting popula-
tion of cosines will have the same distribution as the co-
sines of angles chosen at random from (0, 27).

This method was used to prepare a table of approximately
150,000 cosines of random angles. The random numbers emploved
were from the RAND table of random digits (14b). Each random
number consisted of six digits. When the RAND table was ex-

hausted, the random digit cards were put in random order by
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sorting on four random digits (not used in the calculations)
in each card. The digits from each card then were put in
random order as they entered the IBM=650 via control‘panel
wiring, and the RAND table was reused to calculate a new set
of cosines. The cosines were punched out 10 per card in the
form .xxxxxxx on standard IBM cards. Two of these cosines
were punched into each random input card to be used as cos ¢
and cos @ as described earlier.

Chi-squared and Kolmogorov-Smirnov goodness-of-fit tests
were made, as described in Appendix A, for the cosines. The

- results of these tests are shown in Tables 19 and 20,

Table 19, Chi-squared goodness~of-fit test of cosine devi-

ates (k=21)
Deviates -2 log A P(-2 log A* » =2 log }A)
1-25,000 7.79 0.98
25,000-50,000 8.01 | 0.97
50,000~75,000 13.21 0.86
75,000-100,000 7.68 ) 0.98

100,000~150,000 8.37 0.97
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Table 20. Kolmogorov-Smirnov goodness-of-fit test of cosine

deviates
level
1-25,000 0.0058 0.0083
25,000-50,000 0.0030 0.0083
50,000-~75,000 0.0074 0.0083
75,000-100,000 0.0047 0.0083

100,000-150,000 0.0023 0.00626
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APPENDIX K
Emission Probabilities for Iron Inelastic

Scattering Gamma-Rays

Inelastic scattering occurs in iron at incident neutron
energies above 0.85 Mev., In such events kinetic energy is not
conserved, The incident neutron is absorbed byi;he nucleus
and immediately re-emitted with substantially reduced energy.
The energy lost by the neutron leaves the nucleus in an ex-
cited state. The excitation energy of this‘nucleus then is
given off in the form of gamma-rays.

Cross sections for the production of inelastic scattering
gamma-rays in iron have been compiled by Nuclear Development
Corporation (13). These cross sections Qere used to prepare
a table of emission probabilities as a function of incident
neutron energy for the six inelastic scattering gammas of
interest in this study (énergies less than 5 Mev). The
probability of emission for a given gamma-ray of energy ET is
given by

P(E,Y) = El(E_l:i'.)__

Oin(By1)
where GT is the cross section for production of the gamma-ray,
Oin is the total inelastic scattering cross section for iron,
and E;.1 is the energy of the incident neutron. The resulting
probabilities are given in Table 21,

The energy range in which iron inelastic scattering
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Table 21, Emission probabilities for iron inelastic scatter-
ing gamma-rays (13)

Energy of in-
cident neutron

Gamma energy (Mev)

(Mev) 0.845 2.09 2,66 2,95 3.01 3.38
0.897 1.0000 0 0 0 0 0
0.943 1.0000
0.991 1.0000
1.042 1.0000
1,096 1.0000
1.15 1.0000
1,21 1.0000
1.27 1.0000
1.34 1.0000
1,41 1.0000
1.48 1.0000
1.55 1.0000
1.63 1.0000
1,72 1.0000
1.81 1.0000
1.90 1.0000
2.00 1.0000 Y
2.10 1.0000
2.21 0.9989 0.0011
2.32 ° 0.9927 0.0073
2.44 0.9810 0.0190
2.56 0.9634 0.0366 V.

2.69 0.8303 0.0648 0.1049 N

2.83 0.7354 0.0987 0.1659

2.97 0.6123 0,1379 0.1946 0.0552

3.13 0.5333 0.1630 0.2148 0.0859 0.0030 v
3.29 0.4796 0.1828 0.2250 0.0985 0.0141

3.46 0.4357 0.1941 0.2276 0.1084 0.0201 0.0141
3.64 0.4129 0.2017 0.2219 0.1150 0.0215 0.0269
3.82 0.4046 0.2075 0.2006 €.1196 0.0277 0.0401
4.02 0.3978 0,2079 0.1792 0.1290 0.0287 0.0573
4,23 0.4049 0.2055 0.1484 0,1408 0.0342 0.0662
4,44 0.4061 0.2070 0.1210 0.1553 0.0390 0.0717
4,67 0.4080 0.1998 0.0941 0.1707 0.0458 0.0816
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occurs was broken up into six intervals or groups. Table 21
was then used to prepare a set of inelastic gamma-ray emission
probabilities for each energy group. Each of these sets in-
cludes, of course, only those inelastic scattering gammas that
are possiﬁle for the given energy group. These probabilities
are given in Table 22.

Table 22, Averaged emission probabilities for iron inelastic
scattering gamma-rays

' Gamma energy (Mev)
Energy of in-
cident neutron

(Mev) 0.845 2,09 2,66 2.95 3.01 3.38
- 0-2.21 1.0000 0 -0 0 0 0
2,21-2.69 0.9840 0.0160 0 0 0 0
2.69-2,97 0.7828 00,0718 0.1354 0 0 0
2,97-3.13 0.6123 0,1379 0.1946 0.0552 0 , 0
3.13-3.46 0.5C65 0.,1729 0.2199 0.0922 0.0085 0
3.46-4,02 0.4128 0.2028 0.2073 0.1180 0.0245 0.0346
4.,02-4,65 0.4063 00,2040 0.1212 0.1556 0.,0397 0.0732

Table 22 was used, as described in the program section,
to select the energy change, Ey, in iron inelastic scattering

events.
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APPENDIX L

Cross Section Data

Most of the cross section data that were used in this
study were obtained from a comprehensive compilation that has
been madé‘by the Nuclear Development Corporation of America
(13), (28). 7In the NDA work, the energy range between 100 ev
and 4.67 Mev was divided into 215 intervals. The following
data from this compilation, in the energy range 100 ev to
4.67 Mev, were uéed in the present study:

Iron: Total cross section, inelastic scattering cross
section, radiative capture cross section, in-
elastic scattering gamma-ray production cross
sections, expansion coefficients for the dif-
ferential elastic scattering cross section (see
Appendix F)

Oxygen: Total cross section, expansion coefficients for
the.differential elastic scattering cross sec-
tion (see Appendix F)

The total cross section for hydrogen at all energies and
the total cross sections for iron and water at thermal ener-
gies were obtained from (15). At energies above 1 ev the
total cross section for water was assumed to be equal to the
sum of the cross sections for the hydrogen and oxygen nuclei
in water,

The radiative capture cross section for hydrogen was
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assumed to vary inversely as the square root of the incident
neutron's energy (1/V variation) from a value of 0.33 barns at
0.025 ev (15). The capture cross section of iron for incident
neutron energies of 0 to 100 ev was assumed to vary as 1/v
from a value of 2.53 barns at 0.025 ev (15). The capture
cross section for oxygen is negligible at all energies.

The energy range from 0.to 100 ev was broken up into 20
groups for the hydrogen data and into 9 groups for the other
data. These low energy groups were not changed in thg group
combinations that will now be described.

For each of the energy groups that have been described
(215 from the NDA compilation, plus 20 for hydrogen data and
9 for other data), the following constants were calculated:

1. The expansion coefficients, Aj (see Appendix F), for
the differential elastic scattering probabilities of iron and
oxygen.

2, The maximum values, M', of the differential elastic
scattering probabilities for iron and oxygen (see Appendix I).
3. The macroscopic total cross sections for iron and

water.

4, The capture probabilities for hydrogen and iron
(capture probability = capture cross section/total cross sec-
tion) at energies above thermal.

5. The inelastic scattering probability for iron (in-

elastic scattering probability = inelastic scattering cross
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section/total cross section).

A tabulation of these data was made and on the basis of
this table, 128 of the energy groups were combined with the
remaining 96 in such a manner so that the variation of the
cross section data over the range of each energy interval was
small, This combination resulted in a tabulation of the data
in 96 energy groups from O to 4.67 Mev for all of the data ex-
cept thoée for hydrogen. The hydrogen data were tabulated
into 107 energy groups (because of the larger number of therf
mal groups for the hydrogen data). These final tabulations
were the ones used in the program.

The final data tabulations were used to establish the
following energy regions in which the elastic scattering angle
distributions, p(cos w*), have different functional forms (see
Appendix F):

' Iron: E;_; < 0.0221 Mev = Ejgope? Slastic scattering is
isotropic in the center-of-mass coordinate system,
i.e., plcos ¥¥)= %

*
Eisop, < By < 0.601 Mev = Eyp_ , p(cos ¥)
3 .
= Z A cosjw*
j=0
_ * 8 jo*
Bi1 72 Brrp, = 0.601 Mev, p(cos y7) = Zj—OAj cos-y

oxygen: Ej-1 £ 0.172 Mev = Eisoo’ scattering is isotropic

in the center-of-mass system, i.e., p(cos y*)= %
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*
‘Bigo, < EBi-y € 3.29 Mev = Erp, p(cos y7)
3 .
= E A cost*
e ]
j=0

5 .
Eiol >EIIO = 3.29 Mev, p(cos ¥%) = J,=0Aj cosJy*

where E;_; is the energy of the incident neutron.
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APPEMNDIX M

Physical Constants

Mass of the iron nucleus = 55.86400 amu (29)

Mass of the oxygen nucleus = 16.00000 amu

Mass of the proton = 1.007593 amu (18)

Mass of the neutron = 1.008982 amu {18)

Molecules of water per cubic centimeter at 298°K =
3,334 x 1022 molecules/cm3

Atoms of iron per cubic centimeter at 298°K = 1,695 x 1023
atoms/cm3

Boltzmann constant = kg = 1.38042 x 10~16 erg/°K (18)
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APPENDIX N

Curve Fitting Procedures

General remarks

Consider the problem of fitting a function, y = p(x), to
a set of observations, p(xj), 1 = 1 to N. Theddest fit will
be obtained for the set of‘parameters such that the following

error function is minimized:

©
il

N N
2 ly(xs) - B(x;) 12 = 2 [y(x)2 + Blx) 2 = 2y(x)p(x;)]
i= i=

]2

N 9 N N _
> Iy(xi)1° - 22 Blxyiy(xy) + 2 [B(x;)
i=1 i=1 i=1

where y(x;) is the value of y = p(x) at x = xj.
The conditions that must hold for Q to be a minimum may

be written

20 _ o350 ) Ly - 3" YR Bexg) = 0
3% i=i ~ o5 * i=1 TS5
cr
N )
?-—-—1 géxi [y(x;) - B(x;)] =0 . (N.1)

where 8 represents a parameter of p(x). Thus, N.l represents
a set of k equations where k is equal to the number of param-
eters in p(x). The solutions of this set of equations give

the parameters for the best fit.

In general, this ﬁgt of eguations cannot be solved
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explicitly for the best fit parameters. The methods used in
the present study to obtain the best set of parameters will be

discussed individually for the various functions used.

Water lavers

Let y(xy) = A + Bxj + Cxiz. The equations N.l1 are linear
in A, B, and C, and the solutions for the three parameters may
be obtained explicitly.

A = [g(bf - d2) - a(hf - 1d) + b(hd - 1b)]/D

it

B = [N(hf - 1d) - g(af - bd) + b(al - hb)]/D

[N(1b - hd) - a(al - hb) + g(ad - b?)]/D

i

Cc

where

o
fl

N(bf - d2) - a(af - db) + b(ad - b2)

[¢]

and
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N
1= Z Xi2§(xi)
i=1

First iron laver

The function to be fitted is

L plx) = aeP™

The equations N.l can be solved explicitly for a (because of
the linearity in a), but not for B. One method of obtaining
£he best fit parameters is to make a first guess, P, for B,
and to expand the function e(Bl + AP)x in a Taylor's series,
where AB is to be found so that f; + AB = B * the best fit.

By inserting only the first two (linear) terms of this expan-
sion, equations N.l can be solved for a and AB. Thesa values
are approximate, of course, because of the higher orcer terms
that are thrown out. A new guess, 62== f1 + AR, for B is then
inserted in the place of B, and the‘protess is repeated. Suc-
ceeding values of Bj, as the process is repeated, will con-
verge to the best fit value for p. (Note that, given a value
for B, the corresponding besf a can be obtained explicitly in
each instance).

Unfortunately, this method is slow. The method was em-
ployed in some of the earlier work in this study, but the con-
vergence was inconveniently slow in most instances and almost
prohibitively so in others. Therefore, a grid examination

technique was used in the majority of the curve £itting calcu-
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lations. (All of the curve fitting described in this appendix
was done with programs written especially for this project in
the FORTRANSIT coding system.) The grid method proceeds as
follows:

1. A first guess for B, and initial values for a, b, and
c (see below) are inserted into the program. The best fit
value for a, corresponding to the first guess for B, is then

calculated (via N.1l) from

N BX‘ N 26}{.
a=2_ Blxzle /> e
i=1 i=1
and the corresponding value of Q is calculated from

S 2
Q=2 l[_Y(Xj_) - B(xy)]
i=1 - ‘

Bx4
where y(xi) = ae =

2, The previous value for B is then multiplied by
(1 + ab) and, using this new B, new values for o and Q are
calculated.

If the new.Q is smaller than the previous Q, this step
(step 2) is repeated,

If the new value of Q is larger than the previous value
of Q, (1 + ab) is replaced by (1 - ab) and step 2 is repeated
using (1 - ab) instead of (1 + ab).

If multiplying B by both (1 + ab) and (1L - ab) leads to a

larger Value for Q (poorer fit), the program goes to step 3.
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3. The current value of b is replaced by cb, (0 {c 1),
and step 2 is repeated.

This method becomes unwieldy if convergence to more than
4 or 5 significant figures is desired; however, in the present
study, this method was much faster than the expansion method
describedvpreviously. Calculating time required to fit ten
observed points was normally between 5 and 10 minutes for four

significant figures in the parameters.

Second and third iron layers

The function to be fitted is
pP(x) = a cosh B(x=-xg)
A grid method similar to that used for the first iron layers
was used in fitting this function. The method proceeds as
follows:

1. First guesses for B and for xo are inserted into the
program along with values for a, b, and c¢. The best o is then
calculated from

N N
a = 22& p(xj) cosh 5(xi-xo)/52£ coshzﬁ(xi-xo)

and Q is calculated from
ZN
- = 2
Q=g [vx) - blx)]
where y(xi) = a cosh B(x;-%x4) .

2. The previous value of B is multiplied by (1 + ab) and,

using this new B, new values for a and Q are calculated.
{
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If the new value of é'is smaller than the old value of
Q, this step is repeated.

If the new value of Q@ is larger than the old value of Q,
(L + éb) is replaced by (1 - ab) and step 2 is repeated using
(1 - ab).

If multiplying the previous value of f by both {1 + ab)
and (1 - ab) leads to a lérger value for Q, the program goes
to step 3.

3. The previous value of x5 is multiplied by (1 + ab)
and, using this new Xy, new values for o and Q are calculated.

If the new value for Q is smaller than the old value of
Q, this step is repeated.

If the new value of Q is larger than the old value of Q,

1 + ab) is replaced by (1 - ab) and step 3 is repeated using
(1L - ab).

If multiplying the previous value of x, by both (1 + ab)
and (1 = ab) leads to a larger value for Q, the program goes
back to step 2. '

Steps 2 and 3 are repeated until all changes [via
(1 i’ab)] in the parameters B and x, lead to poorer fits
(larger Q). The program then goes to 4.

4. The current value of b is replaced by cb (0 {c (1)

and steps 2 and 3 are repeated.
Typical computing times required with this method to ob-
tain the best fit parameters to four significant figures for

ten observed points were between 10 and 40 minutes,
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